Operating Procedure

IO-Link Gateway

UC2-IOL

OPTEX FA CO. LTD.

The following operating procedure is for checking or changing setting values in a D3RF, D3WF, CDA, CD22 (via CDA) or TD1 (via CDA) connected to the UC2-IOL via IO-Link.

* Refer to the UC2-IOL address list or the address list of the connected module being configured.

General Description

IO-Link is used to connect the UC2-IOL to the IO-Link master unit, and a proprietary interface is used to connect the UC2-IOL to the connected modules (D3RF, etc.)

This means IO-Link should be used to check or change setting values in the connection module from the IO-Link master unit, and access should be through UC2-IOL module communication (address 262) and module data (address 263)

Refer to the UC2-IOL address list for more information on module communication (address 262) and module data (address 263).

* Refer to the respective address list for the setting values and setting details of each connection module

1. Check the number of the module to check or change the setting value.

Check the number of the module for which the setting value will be checked or changed. The modules are numbered (1, 2, 3, etc.) according to their distance from the UC2-IOL, starting with the farthest (leftmost side).

Example: With 5 fiber amplifiers and 1 displacement sensor amplifier unit connected

2. Check the module address and communication data length for the setting value to be checked or changed.

Refer to the address list of the module for which the setting value will be checked or changed, and check the module address and communication data length of the setting value.

Example:

To check the D3RF display setting	Module address: 100 Data length: 2
To perform D3WF first-point teaching	Module address: 202 Data length: 2
To check the CD22 near threshold	Module address: 130 Data length: 2

3. Set the module number, module address, and communication data length being checked or changed to the UC2-

IOL Configure the module number, module address, and communication data length in the UC2-IOL module communication settings (address: 262).

Example:

To check the display setting of the D3RF (Module number: 1)	Module number (address: 262, Sub-address: 1): 1 Module address (address: 262, Sub-address: 2): 100
	Data length (address: 262, Sub-address: 3): 2

. Check the setting value

To check the setting value, read the UC2-IOL module data: data (address: 263 , Sub-address: 1).

Example:

If the display setting for the D3RF (module number: 1) Is setor
0x00, 0x01,0x00
If the near threshold of the CD22 (module number: 3) is -3.00 $0 \times F E, 0 \times D 4,0 \times 00,0 \times 00$
5. Change the setting value.

To change the setting value, write the target change value to UC2-IOL module data: data (address: 263, Sub-address: 1)
Example:

[^0]$0 \times 00,0 \times 01,0 \times 00,0 \times 00$
$0 \times 04,0 \times D 2,0 \times 00,0 \times 00$

OPTEX FA CO., LTD.

[Headquarters]
91 Chudoji-Awata-cho Shimogyo-ku Kyoto 600-8815 JAPAN
TEL +81-75-325-1314
FAX +81-75-325-2936
https:///www.optex-fa.com

F/ASTUS
 UC2-IOL

INDEX LIST

optex fa co.,LtD.

Communication specifications

Min. cyclet	${ }^{2.2 \mathrm{~ms}}$ Coms (230.46pos)	
Baud rate		
Support	Yes	
$10 .-$ Linkrevision	${ }^{1.1}$	
Inputting process data length		
Outputing process data length	32	
Venderio	dee: 1076	hex 0×043
Device 10	dee: 8007	hex 0×15001

Process Data Format

16 modules (13 analog outputs) (Index120: 0)

14 modules (14 analog outputs) (Index 120: 1)

16 modules (16 analog outputs) (Index 120: 2)

Service Data

Events

code		Name	type	Desscription
dec	nex			
16912	Oxa210	Device emperature over-un	Warning	Claar source of heat
	0xa220	Device emperature under-un	Waring	Insulate device
	0x1800	Short Ciciution ax	Notitication	Short tiruito outputs
645	0x1801	Teach / value outo fspecified range	Notrication	Teach / distance value out of speafied range
646	0x1802	Invald modue order	Eror	Module 1.1 .16 must tolow the speacifed order (0.9 .0 D3FF - D3WF - CDA)
647	0x103	Motue count changed	Eror	Modul count has changed sine last power-up of the gateway device.
6148	0x1804	Invald modue comected	Eror	An ivalid not compatible modul has been connected to the gateway.

Errors

code		Additional code		Name	Description
128	0,80	17	0x11	Index notaviable	Access occurs toa note exsing index
128	$0 ; 80$	18	0x12	Subindex notavalable	Access ocuus toante exssing s subindex
128	0880	32	0x20	Sevice temporaili not avalable	Parameeris not a cesesible due tothe curent state ofthe device epplicition
128	0880	35	0x2	Accoss denied	Witita access on a read-only parameter
128	0880	48	0×30	Parameieralue out frange	Witten parametervalue is outide its pemitite value range
128	0880	51	0×33	Parameter engit overun	Wirter poaraneier engsti s sabove its predefined length
128	0880	52	0×34	Parameererengtu underun	Wirter parameter enggti s sbelow it predefined length
128	0,80	64	0x40	Invalid arameier set	
${ }^{128}$	0880	${ }^{65}$	0x4	nosisentrarat	Patameter ino onsistencies were

System command

Index No.		Sub-index No.	Access	Name	Value/Range	Display ${ }^{2}$	Defautualue
dec	${ }_{0 \times 2}{ }^{\text {hex }}$		w	System command	$\begin{aligned} & \text { 65: SP1 Teach } \\ & \text { 66: SP2 Teach } \\ & \text { 130: Restore Factory Settings } \end{aligned}$		

[^1]
OPTEX FA CO. ,LTD.

[Headquarters]
91
Chudoji-Awata-cho Shimogyo-ku Kyoto $600-8815$ JAPAN TEL +81-75-325-1314 FAX +81-75-325-2936
https://www.optex-fa.com

Compact Laser Displacement Sensor

CD22 Series

OPTEX FA CO. LTD

Module Address

$\begin{array}{\|l} \hline \text { Address } \\ \hline \text { Dec } \\ \hline \end{array}$	$\frac{\mathrm{No}}{\text { hex }}$	Name	${ }_{\substack{\text { Access } \\ 1 \\ 1}}^{\text {d }}$	$\left\lvert\, \begin{gathered} \text { Format } \\ (\text { Offfset }) \end{gathered}\right.$	$\underset{\left(\begin{array}{l} \text { (Byyte) } \end{array}\right.}{\substack{\text { (Ben }}}$	Valuekange	Address for CDA *2
	0×1	Product Type	RO	Uint	2	0×011	
2	0x2	Firmware Version	Ro	Uint		0x0011	
3	0×3	Protocol Version	RO	UINT	2	0x0000	
${ }_{-}^{4}$	0x4	Product Revision	RO	UINT	2	0x0000	
5	0x5	Vendor Name	RO	STRING	21016	"OPTEX FA"	
6	0x6	Product Name	Ro	STRING	21032	Product name	
7	0x7	Product ID	RO	STRIING	21032	Product ID	
8	0×8	User Tag Name(Max. 32 byes)	RW	STRING	21032		
,	0x9	Operation Staus	RO	uint	2	0: Initiaize 1: lde 2: Fexeute 3: For use by user	
${ }^{98}$	0×62		RW	Uint	2		
100	0×64	Threshold Near	RW	Uint	2	-Write a roitrary value: Deleiel last error code	
101	0×65	Threshold Far	RW	Uint		-32788~32767	\checkmark
102	0×66	Output hysteresis	RW	UINT	2	0~32767	\checkmark
103	0×67	Calculation flags	RW	Uint	2	10: No calculation	\checkmark
104	0×68	Calculation coefficient Add (Seting value for each comnected sensor)	RW	UINT	2		
105	0×69	Calauluation coefficient Multiply (Setting value for each connected sensor)	RW	UiNT	2	-10000~10000	\checkmark
106	0x6A	Calculation coefficient Divide (Setting value for each connected sensor)	Rw	UINT	2	${ }^{1 \sim 32767}$	\checkmark
107	$0 \times 6 \mathrm{~B}$	Monitor Calculation Values	Rw	Uint	${ }^{2}$	0 : Sensor 2 measured value 1: Calculated value	\checkmark
108	$0 \times 6 \mathrm{C}$	Calculation Values Head	RW	UINT	2		
109	$0 \times 6 \mathrm{D}$	Calculation Values Head	$\stackrel{\text { RW }}{ }$	UINT	2	1: Addition	
110	0×6 E	Calculation Valus Uuit let Head	${ }_{\text {RW }}$	UINT	2	3: ${ }^{\text {2 Sububraction }}$ Abue	\checkmark
111	0×6 F	Calculation Values Unit lett Head2	RW	UiNT	2	3: Absolute value difference	
112	0x70	10 polarity	RW	unt	2	0:PNP (N.O.) 1:NPN (N.O.) 2PNP (N.C.) 3:NPN (N.C.)	\checkmark
113	0x71	Output Selection CH 1	Rw	Uint	2	0 No output	
114	0×72	Output Selection CH2	RW	Uint	2	2: Calaulated value out of range on near side (L) 3: Calculatd value out of range on tar side (HI)	
115	0x73	Output Selection CH3	Rw	uint	2	4: Calculated value out of range on far sid 4: within threshold range (GO) 5: Sensor 1 out of range on near side (LO) 6: Sensor 1 out of range on far side (HI) 7: Sensor 2 within threshold range (GO) 8: Sensor 2 out of range on near side (LO) 9: Sensor 2 out of range on far side (HI)	\checkmark
116	0×74	Exteral input selection	RW	Uint	2	0: No function : Teaching (Far side on rising edge, near side on falling edge) 2: BGS/FGS teaching 3: Zero reset Laser emission OFF	\checkmark
117	0x75	Analog output selection	RW	unst	2	1: Calculated value 2: Sensor 1 3: Sensor 2	\checkmark
118	0x76	Analog scaing	Rw	UוNT	${ }^{2}$	0: No scaling 1: Scaling	\checkmark
$\frac{119}{120}$	0x77	Analog Scaling (max.) $10 \mathrm{~V} / 20 \mathrm{~mA}$	$\stackrel{\text { RW }}{\text { RW }}$	UINT	2	32768~32767	\checkmark
120 121	0x78		Rw	uint	2		\checkmark
129	0×81	Amplifier product code	RO	UINT	2	0×2503	\checkmark
$\begin{array}{\|l\|l\|} \hline 130 \\ 131 \\ \hline \end{array}$	-	Swithing point Near (Leap point Close)	$\stackrel{\text { RW }}{\text { RW }}$	UINT	$\frac{2}{2}$	Cos2-15-455:7499 to 7499 (in units of 1 mm)	
$\stackrel{132}{132}$	${ }^{0 \times 84}$	Smiching point frar (Leap point Away)	RW	UINT	2		
133	0x65	Tolerance ObSB	RW	UINT	2	CD22-15-485: 0 to 7499 (in units of $1 \mu \mathrm{~m}$) CD22-35-485: 0 to 2249 (in units of $10 \mu \mathrm{~m}$) CD22-100-485: 0 to 7499 (in units of $1 \mu \mathrm{~m}$)	

*1. RO=Read Only, R/W=ReadWrite, WO=Write Only
*2. Displacement Sensor Amplifier Unit

Errors

OPTEX FA CO., LTD.

[Headquarters]
91 Chudoji-Awata-cho Shimogyo-ku Kyoto 600-8815 JAPAN
TEL +81-75-325-1314 FAX +81-75-325-2936
https:///www.optex-fa.com

Displacement Sensor Amplifier Unit

CDA Series

OPTEX FA CO. LTD

Module Address

Address No.		Name	Access*	$\begin{aligned} & \begin{array}{l} \text { Format } \\ \text { (Offset) } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { Length } \\ \text { (Byte) } \end{array} \\ & \hline \end{aligned}$	Value/Range
dec	hex					
100	0×64	Threshold Near	RW	UINT	2	32768~32767
101	0×65	Threshold Far	RW	UINT	2	32768~32767
102	0×66	Output hysteresis	RW	UINT	2	0~32767
103	0×67	Calculation flags	RW	UINT	2	0: No calculation 1: With calculation
104	0x68	Calculation coefficient Add (Setting value for each connected sensor)	R/W	UINT	2	-10000~10000
105	0×69	Calculation coefficient Multiply (Setting value for each connected sensor)	R/W	UINT	2	10000~100
106	$0 \times 6 \mathrm{~A}$	Calculation coefficient Divide (Setting value for each connected sensor)	RW	UINT	2	1~32767
107	$0 \times 6 \mathrm{~B}$	Monitor Calculation Values	RW	UINT	2	0 : Sensor 2 measured value 1: Calculated value
108	$0 \times 6 \mathrm{C}$	Calculation Values Head1	RW	UINT	2	0: None
109	$0 \times 6 \mathrm{D}$	Calculation Values Head2	RW	UINT	2	1: Addition
110	$0 \times 6 \mathrm{E}$	Calculation Values Unit left Head1	RW	UINT	2	2: Subtraction
111	0x6F	Calculation Values Unit left Head2	RW	UINT	2	3: Absolute value difference
112	0x70	I/O polarity	RW	UINT	2	$\begin{aligned} & \text { 0:PNP (N.O.) } \\ & \text { 1:NPN (N.O.) } \\ & \text { 2:PNP (N.C.) } \\ & \text { 3:NPN (N.C.) } \end{aligned}$
113	0x71	Output Selection CH1	RW	UINT	2	0: No output 1: Calculated value within threshold range (GO)
114	0x72	Output Selection CH2	RW	UINT	2	2: Calculated value out of range on near side (LO) 3: Calculated value out of range on far side (HI)
115	0x73	Output Selection CH3	R/W	UINT	2	4: Sensor 1 within threshold range (GO) 5: Sensor 1 out of range on near side (LO) 6: Sensor 1 out of range on far side (HI) 7: Sensor 2 within threshold range (GO) 8: Sensor 2 out of range on near side (LO) 9: Sensor 2 out of range on far side (HI)
116	0x74	External input selection	RW	UINT	2	0: No function 1: Teaching (Far side on rising edge, near side on falling edge) 2: BGS/FGS teaching 3: Zero reset 4: Laser emission OFF
117	0x75	Analog output selection	RW	UINT	2	0: None 1: Calculated value 2: Sensor 1 3: Sensor 2
118	0x76	Analog scaling	RW	UINT	2	$\begin{aligned} & \text { 0: No scaling } \\ & \text { 1: Scaling } \\ & \hline \end{aligned}$
119	0x77	Analog Scaling (max.) $10 \mathrm{~V} / 20 \mathrm{~mA}$	R/W	UINT	2	32768~32767
120	0x78	Analog Scaling (min.) $0 \mathrm{~V} / 4 \mathrm{~mA}$	RW	UINT	2	32768~32767
121	0x79	Baud rate (Setting value for each connected sensor)	RW	UINT	2	0: No connection 1: 9.6 kbps 2: 19.2 kbps 3: 38.4 kbps 4: 57.6 kbps 5: 115.2 kbps 6: 230.4 kbps : 312.5 kbps 8: 468.75 kbps 9: 500 kbps 10: 625 kbps 11:833.3 kbps 12: 937.5 kbps 13: 1250 kbps
129	0×81	Amplifier product code	RO	UINT	2	0x2503

[^2]
OPTEX FA CO., LTD.

[Headquarters]
91 Chudoji-Awata-cho Shimogyo-ku Kyoto 600-8815 JAPAN

TEL +81-75-325-1314 FAX +81-75-325-2936
https:///www.optex-fa.com

MODULE ADDRESS LIST
Digital Fiber Amplifier

D3RF Series

OPTEX FA CO. LTD.

Module Address

Address No.		Name	Access*	Format (Offset)	Length (Byte)	Value/Range
dec	hex					
1	0x1	Product Type	RO	UINT	2	0x0012
2	0x2	Firmware Version	RO	UINT	2	0x0200 or more
3	0x3	Protocol Version	RO	UINT	2	0x0001
4	0x4	Product Revision	RO	UINT	2	Ox0001
5	0x5	Vendor Name	RO	STRING	2 to 16	"OPTEXFA"
6	0x6	Product Name	RO	STRING	2 to 32	Product name
7	0x7	Product ID	RO	STRING	2 to 16	Product ID
8	0x8	User Tag Name (Max. 32 bytes)	R/W	STRING	2 to 32	"'"
9	0x9	Operation Status	RO	UINT	2	0: Initialize 1: Idle 2: Execute 3: For use by user
98	0x62	Error Code Refer to the separate "Errors" table	R/W	UINT	2	- Read: Last error code -Write arbitrary value: Delete last error code
100	0x64	Display	R/W	UINT	2	0: Numeric display 1: Bar display 2: Percentage display
102	0x66	Teach-in mode CH1	R/W	UINT	2	0: 2-point teaching 1:1-point teaching 2: Through teaching
103	0x67	Teach-in mode CH2	R/W	UINT	2	3: Zone teaching 4: Auto-teaching 5: Percent teaching 6: Zero percent teaching
104	0x68	Response Speed	R/W	UINT	2	$\begin{aligned} & 0: 1-\mathrm{HS}(22 \mu \mathrm{~s}) \\ & 1: 2-\mathrm{FS}(85 \mu \mathrm{~s}) \\ & 2: 3-\mathrm{ST}(250 \mu \mathrm{~s}) \\ & 3: 4-\mathrm{LG}(1 \mathrm{~ms}) \\ & 4: 5-\mathrm{PL}(2 \mathrm{~ms}) \\ & 5: 6-\mathrm{UL}(4 \mathrm{~ms}) \\ & 6: 7-\mathrm{EL}(8 \mathrm{~ms}) \end{aligned}$
105	0x69	Gain	R/W	UINT	2	0: Low power 1: Medium power 2: High power
106	0x6A	MF-Input	R/W	UINT	2	0: External teaching input 1: Test input 2: Synchronous input 3: Counter reset input 4: External all teaching input 5: No function
107	0x6B	Key Lock	R/W	UINT	2	0: Unlock 1: Lock level 1 (Full lock) 2: Lock level 2 (Half lock)
108	0x6C	Operation mode CH1	R/W	UINT	2	O: L-on (Light ON)
109	$0 \times 6 \mathrm{D}$	Operation mode CH2	R/W	UINT	2	1: D-on (Dark ON)
110	$0 \times 6 \mathrm{E}$	Threshold level CH1 Lower Limit	R/W	UINT	2	999 to 9999 The writable range varies depending on the operation mode.
111	0x6F	Threshold level CH1 Upper Limit	R/W	UINT	2	-999 to 9999 Accessible only in Zone teaching mode.
112	0x70	Threshold level CH2 Lower Limit	R/W	UINT	2	-999 to 9999 The writable range varies depending on the operation mode.
113	0x71	Threshold level CH2 Upper Limit	R/W	UINT	2	-999 to 9999 Accessible only in Zone teaching mode.

Address No.		Name	Access*	Format (Offset)	Length (Byte)	Value/Range
114	0x72	Timer setting CH1	RW	UINT)	0: OFF delay timer
115	0x73	Timer setting CH2	RW	UINT	2	1: One-shot timer
116	0x74	CH1 Off delay time	R/W	UINT	2	
117	0x75	CH1 On delay time	RW	UINT	2	0~9999:0~9999ms
118	0×76	CH2 Off delay time	RW	UINT	2	-1~-9:0.1~0.9ms
119	0x77	CH2 On delay time	R/W	UINT	2	
123	0x7B	Hysteresis	RW	UINT	2	1~40
125	0x7D	ASC (Automatic Sensitivity Control)	R/W	UINT	2	0: None 1: Normal correction 2: High-speed correction 3: Max. speed correction
126	0x7E	Energy Saving	RW	UINT	2	0: Standard 1: Turn off display automatically 2: Emission cycle $\times 2$ 3: Display and emission cycle
127	0x7F	Reverse display	R/W	UINT	2	0: Standard 1: Inverted display
200	0xC8	Store zero-reset	wo	Byte	2	0 to 65535: Execute
201	0xC9	Cancel zero-reset	WO	Byte	2	0 to 65535: Execute
202	0xCA	Teach-in 1-point	WO	UINT	2	1: Output 1 teaching
203	0xCB	Teach-in 2-point	WO	UINT	2	2: Output 2 teaching
210	0xD2	Warm start Reset	WO	UINT	2	3: Restart
211	0xD3	Return to top menu	wo	Byte	2	Execute with written value
212	0xD4	Factory Reset	wo	UINT	2	3: Initialize (Allowed only when un

* RO=Read Only, RW=ReadWrite, WO=Write Only

Errors

OPTEX FA CO., LTD.

[Headquarters]
91 Chudoji-Awata-cho Shimogyo-ku Kyoto 600-8815 JAPAN

TEL +81-75-325-1314 FAX +81-75-325-2936

MODULE ADDRESS LIST
White LED Digital Fiber Amplifier

D3WF Series

OPTEX FA CO. LTD.

Module Address

Address No.		Name	Access*	Format (Offset)	Length(Byte)	Value/Range
dec	hex					
1	0x1	Product Type	RO	UINT	2	0x0012
2	0x2	Firmware Version	RO	UINT	2	0x0100
3	0×3	Protocol Version	RO	UINT	2	0x0001
4	0x4	Product Revision	RO	UINT	2	0x0001
5	0x5	Vendor Name	RO	STRING	2 to 16	"OPTEX FA"
6	0×6	Product Name	RO	STRING	2 to 32	Product name
7	0x7	Product ID	RO	STRING	2 to 16	Product ID
8	0x8	User Tag Name(Max. 32 bytes)	R/W	STRING	2 to 32	User ID (Max. 32 characters)
9	0x9	Operation Status	RO	UINT	2	0 : Initialize 1: Idle 2: Execute 3: For use by user
98	0x62	Error Code Refer to the separate "Errors" table.	R/W	UINT	2	- Read: Last error code - Write arbitrary value: Delete last error code
100	0x64	Display	R/W	UINT	2	0 : Numeric display 1: Bar display 2: Percentage display
102	0x66	Teach-in mode CH1	R/W	UINT	2	0: 1-point teaching
103	0x67	Teach-in mode CH2	R/W	UINT	2	1:2-point teaching 2: Dynamic teaching
104	0x68	Response speed	R/W	UINT	2	$\begin{aligned} & 0: 16 \mu \mathrm{~s} \\ & 1: 200 \mu \mathrm{~s} \end{aligned}$
105	0x69	Gain	R/W	UINT	2	0: Low power 1: Standard power 2: High power 3: Automatic power
106	0x6A	MF Input	R/W	UINT	2	0 : Extended input 1: All teaching (master only) 2: Light ON/Dark ON switching 3: Test input 4: Off
107	0x6B	Key Lock	R/W	UINT	2	0 : Cancel 1: Lock 2: Lock for non-extended input
108	0x6C	Operation mode CH1	R/W	UINT	2	0: Auto
109	0x6D	Operation mode CH2	R/W	UINT	2	$\begin{aligned} & \text { 1: L-on (Light ON) } \\ & \text { 2: D-on (Dark ON) } \end{aligned}$
110	0x6E	Threshold level CH1 Lower Limit	R/W	UINT	2	-999 to 9999
112	0x70	Threshold level CH2 Lower Limit	R/W	UINT	2	The writable range varies depending on the operation mode.
114	0x72	Timer setting CH1	R/W	UINT	2	0: Delay OUT
115	0x73	Timer setting CH2	R/W	UINT	2	1: Individual
116	0x74	CH1 Off delay time	R/W	UINT	2	
117	0x75	CH1 On delay time	R/W	UINT	2	0~9999:0~9999ms
118	0x76	CH2 Off delay time	R/W	UINT	2	-1~-9:0.1~0.9ms
119	0x77	CH2 On delay time	R/W	UINT	2	
121	0x79	Synchronization	R/W	UINT	2	0: Asynchronous 1: Synchronous
123	0x7B	Sensitivity	R/W	UINT	2	$\begin{aligned} & 0: 10 \% \\ & 1: 20 \% \\ & 2: 50 \% \end{aligned}$

Address No.		Name	Access*	Format (Offset)	$\begin{aligned} & \begin{array}{l} \text { Length } \\ \text { (Byte) } \end{array} \\ & \hline \end{aligned}$	Value/Range
125	0x7D	ASC (Automatic Sensitivity Control)	R/W	UINT	2	$\begin{aligned} & \text { 0:OFF } \\ & \text { 1:ON } \end{aligned}$
126	0x7E	Eco mode	R/W	UINT	2	$0: \text { OFF }$ 1:ON
127	0x7F	Reverse display	R/W	UINT	2	0 : Normal display 1: Inverted display
200	0xC8	Store zero-reset	wo	Byte	2	Execute with write operation
201	0xC9	Cancel zero-reset	WO	Byte	2	Execute with write operation
202	0xCA	Teach-in 1-Point	WO	UINT	2	1: Output 1 teaching
203	0xCB	Teach-in 2-Point	WO	UINT	2	2: Output 2 teaching
210	0xD2	Warm start Reset	WO	UINT	2	3: Restart
211	0xD3	Return to top menu	WO	Byte	2	Execute with write operation
212	0xD4	Factory Reset	wo	UINT	2	3: Initialize (Allowed only when

* RO=Read Only, RW=ReadWrite, WO=Write Only

Errors

High-order byte		Low-order byte		Description
dec	hex	dec	hex	
0	0x0	0	0×0	No error
Applicable address number		1	0x1	The address number is out of range.
		2	0x2	The sub address number is not supported.
0	0x0	3	0x3	An attempt was made to write setting values to sensors that are all locked, or to initialize while locked.
		4	0×4	The teaching target output specification value (1 or 2) is incorrect.
		5	0x5	Teaching mode has no second teaching, or the first has not yet been executed.
		6	0x6	The execution specification value (3) for restart and initialization is incorrect.
Applicable address number		7	0x7	An attempt was made to write a setting value that is out of range.
		8	0x8	The setting value write operation failed. (Attempted to write a readonly setting value)
0	0x0	11	0xB	The amount of light received during teaching was too low.
		12	0xC	The amount of light received during teaching was saturated.
		13	0xD	There was too little difference in the amount of light received during 2point teaching.
		15	0xF	A hardware error was detected.

OPTEX FA CO., LTD.

[Headquarters]
91 Chudoji-Awata-cho Shimogyo-ku Kyoto 600-8815 JAPAN

TEL +81-75-325-1314 FAX +81-75-325-2936

Through-beam Edge Sensor

TD1 Series

OPTEX FA CO. LTD

Module Address

Address No.		Name	$\begin{array}{\|c} \hline \text { Access } \\ \star 1 \end{array}$	Format (Offset)		Value/Range	Address for CDA*2
dec	hex						
1	0×1	Product Type					
2	0x2	Firmware Version	RO	UINT	2	0x1011	
3	0x3	Protocol Version	RO	UINT	2	0x0	
4	0x4	Product Revision	RO	UINT	2	Product hardware version	
5	0x5	Vendor Name	RO	STRING	2 to 16	"OPTEX FA"	
6	0×6	Product Name	RO	STRING	2 to 32	Product name	
7	0x7	Product ID	RO	STRING	2 to 32	Product ID	
8	0x8	User Tag Name (Max. 32 bytes)	RW	STRING	2 to 32	User ID (Max. 32 characters)	
9	0x9	Operation Status	RO	UINT	2	0 : Initialize 1: Idle 2: Execute 3: For use by user	
14	0xE	Serial Number	RO	STRING	2 to 32	Set using ASCII code	
98	0x62	Error Status Refer to the separate "Errors" table.	RW	UINT	2	- Read: Last error code - Write arbitrary value: Delete last error code	
100	0x64	Threshold Near	R/W	UINT	2	32768~32767	
101	0x65	Threshold Far	RW	UINT	2	-32768~32767	\checkmark
102	0x66	Output hysteresis	RW	UINT	2	0~32767	\checkmark
103	0x67	Calculation flags	RW	UINT	2	0: No calculation	\checkmark
104	0x68	Calculation coefficient Add (Setting value for each connected sensor)	R/W	UINT	2		
105	0x69	Calculation coefficient Multiply (Setting value for each connected sensor)	RW	UINT	2	10000~10000	\checkmark
106	0x6A	Calculation coefficient Divide (Setting value for each connected sensor)	RW	UINT	2	1~32767	\checkmark
107	0x6B	Monitor accumulations	RW	UINT	2	0 : Sensor 2 measured value 1: Calculated value	\checkmark
108	0x6C	Calculation Values Head1	RW	UINT	2	0 : None	
109	0x6D	Calculation Values Head2	RW	UINT	,	1: Addition	
110	0x6E	Calculation Values Unit left Head1	R/W	UINT	2	2: Subtraction	\checkmark
111	0x6F	Calculation Values Unit left Head2	RW	UINT	2	3: Absolute value difference	
112	0x70	I/O polarity	R/W	UINT	2	$\begin{aligned} & \text { 0:PNP (N.O.) } \\ & \text { 1:NPN (N.O.) } \\ & \text { 2:PNP (N.C.) } \\ & \text { 3:NPN (N.C.) } \end{aligned}$	\checkmark
113	0x71	Output Selection CH1	RW	UINT	2	0: No output 1: Calculated value within threshold range (GO)	
114	0x72	Output Selection CH2	RW	UINT	2	2: Calculated value out of range on near side (LO) 3: Calculated value out of range on far side (HI)	
115	0x73	Output Selection CH3	RW	UINT	2	4: Sensor 1 within threshold range (GO) 5: Sensor 1 out of range on near side (LO) 6: Sensor 1 out of range on far side (HI) 7: Sensor 2 within threshold range (GO) 8: Sensor 2 out of range on near side (LO) 9: Sensor 2 out of range on far side (HI)	\checkmark
116	0x74	External input selection	R/W	UINT	2	```0 : No function 1: Teaching (Far side on rising edge, near side on falling edge) 2: BGS/FGS teaching 3: Zero reset 4: Laser emission OFF```	\checkmark
117	0x75	Analog output selection	R/W	UINT	2	0: None 1: Calculated value 2: Sensor 1 3: Sensor 2	\checkmark
118	0x76	Analog scaling	RW	UINT	2	0: No scaling 1: Scaling	\checkmark
119	0x77	Analog Scaling (max.) $10 \mathrm{~V} / 20 \mathrm{~mA}$	RW	UINT	2	32768~32767	\checkmark
120	0x78	Analog Scaling (min.) $0 \mathrm{~V} / 4 \mathrm{~mA}$	RW	UINT	2	32768~32767	\checkmark

Address No.		Name	$\begin{gathered} \text { Access } \\ { }_{\star 1} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Format } \\ & \text { (Offset) } \end{aligned}$	$\begin{array}{\|l} \begin{array}{l} \text { Length } \\ \text { (Byte) } \end{array} \\ \hline \end{array}$	Value/Range	Address for CDA*2
dec	hex						
121	0x79	Baud rate (Setting value for each connected sensor)	R/W	UINT	2	$0:$ No connection $1: 9.6 \mathrm{kbps}$ $2: 19.2 \mathrm{kbps}$ $3: 38.4 \mathrm{kbps}$ $4: 57.6 \mathrm{kbps}$ $5: 115.2 \mathrm{kbps}$ $6: 230.4 \mathrm{kbps}$ $7: 312.5 \mathrm{kbps}$ 88.468 .7 kkps $9: 500 \mathrm{kbps}$ $10: 625 \mathrm{kbps}$ $11: 83 . \mathrm{kkps}$ $12: 937.5 \mathrm{kbps}$ $13: 1250 \mathrm{kbps}$	\checkmark
129	0×81	Amplifier product code	RO	UINT	2	0x2503	\checkmark
134	0×86	Average Number	RW	UINT	2	1~128	
135	0x87	Measurement Type	R/W	UINT	2	0: Edge positive 1: Edge negative 2: Width	
136	0x88	Sampling rate	R/W	UINT	2	$0: 500 \mu$ (Fixed value)	
143	0x8F	Measuring direction	R/W	UINT	2	0 : Top to Bottom 1:Buttom to Top	
144	0×90	Zeroing value	RO	UINT	2	-9999~5000	
152	0x98	Sensitivity	R/W	UINT	2	0 : Minimum value 1: Second value 2: Third value 3: Fourth value 4: Maximum value 5: Adjustment value	
200	0xC8	Save zero-reset	wo	Byte	2	Execute with write operation	
201	0xC9	Cancel zero-reset	wo	Byte	2	Execute with write operation	
212	0xD4	Factory Reset	wo	UINT	2	3: Initialize	

*1. RO=Read Only, RW=Read/Write, WO=Write Only
*2. Displacement Sensor Amplifier Unit

Errors

High-order byte	Low-order byte		Description
dec ${ }^{\text {dex }}$	dec	hex	
0x0	0	0×0	No error
Applicable address number	1	0×1	The address number is out of range.
	2	0x2	The sub address number is not supported.
	3	0x3	The ETX code in the command string is invalid.
	4	0×4	A checksum error was detected.
	5	0x5	The command code is invalid.
	6	0x6	A non-regulated parameter was specified.
	7	0x7	An out of range numeric value was specified.
	8	0x8	Reserved
	9	0x9	

OPTEX FA CO., LTD.

[Headquarters]
91 Chudoji-Awata-cho Shimogyo-ku Kyoto 600-8815 JAPAN

TEL +81-75-325-1314 FAX +81-75-325-2936
https:///www.optex-fa.com

FAStus

INSTRUCTION MANUAL

UC2-IOL

OPTEX FA CO.,LTD.

NOTICE

\qquad

1. Included Accessories

- Mounting bracket

2. Dimensions

UC2-IOL (with mounting bracket equipped)

3. I/O Circuit Diagrams

SIO mode (standard I/O mode) with push-pull

4. Part Names

5. Lists of Cables and Connectable Models

Connector cables
(For UC2-IOL and D3RF/D3WF series connector types)

Series name	Model	Type
M84CN series	M84CN-2S	2 mong
(M8,4.pin coonector	-5s	5 mong
	-10s	10 mong

Fiber amplifier

Displacement sensor amplifier units

Displacement sensors/edge sensors

*These are lists of connectable models as of January 2020. There are plans to add prod
Ucts sequentiall, so contact OPTEX FA for details on models that are not listed here.

6. Installation

Installation on DIN rail or the included mounting bracket
Hook the indicator--side tab on the DIN rail or the included
nounting bracket (©), and then press dow mounting
locks (2).

Removal
While pressing the main unitin the direction of (D), ilit
the indicator side (2) to remove the main unit.

Inter-connecting with fiber amplifiers and displacement sensor amplifier units
To inter-connect all the units, sidide the fifier amplifiers and displacement sensor amplifier
units along the IIN rail that the UCL if a attached to.

\triangle CAUTION

- Be sure to turr off the power before performing this work.
- When inter-connecting, check. the ambient temperature and use the units within the operating range for the ambient temperature.
To prevent short-circ

Installing end plates (sold separately)

To prevent the inter-connected units from coming loose, attach end plates (sold sepa-
rately; model: :EF--EBO-W 190) to the DiN rail so that they surround the inter-connected units and fix the end plates in place with screws.
Orient the end plates so that the producterside is against the unit and the fiber ampifi-
ers,
 se a tightening torque of $0.9 \mathrm{~N} \cdot \mathrm{~m}$ or less.

\triangle CAUTION
When inter-connecting the unit to D3BF/D3WF series fiber amplifier and to CDA series displacement sensor amplifier units, be sure to connect the inter-connection master unit
on the efft end (ID $=1$). Ifan inter-connection slave unitit is conneected on the e lett end, the inter-connection connector will be exposed, causing inter ererence with the end plate. Allso,
fouling on or damage to the inter-connection connector may damage the fiber amplifiers.

7. Connecting

Connecting the connector cable (sold separately) Use M84CN-US M8 connector cable to connect to the 10 -Lin master unit.
Check the orientation of the connector pins on the unit side and on the connector cable
side and attach the cable correctly

The UC2 operates with a supply voltage of 18 to 24 VDC (12 to 24 VDC in SIO mode). Be sure toperhect the wiring to the 1 - Link master unit and to the power supply device
because incorrect wiring may cause a fire or damage the product.

Connecting UC2 to CDA units (connecting to CD22 and TD1 units)
To connect the UC2 to cD22 series laser displacement sensors and to TD 1 seriest trough-
beam edge sensors, connect through CDA series displacement sensor amplifier units. <Connection example>

\triangle CAUTION

ADA series power supply must be connected to a power sumply that is separate foom that tor the

Connecting UC2 to D3RF/D3WF series

Usifthe inter-connection connectors to connect the UC2 to D3RF/D3WF series fiber am.

Connecting power supply wires

When three or less fiber amplifiers are inter-connected to the UC2, the fiber amplifiers op-
 master unit on the left end to the same power supply as the 10 -Link master unit.

Fiber amplifier inter-connection order
When inter-connecting the unit to D3RF series and D3WF series fiber amplifiers, do so
with all the D3WF units closest to the unit and all the D3RF
units farthest away Connection example>
\triangle CAUTION

- When inter-connecting the unit to fiber ampilifers be burre to cornectan inter. connection master unit

 : Can be acaured.

Connecting UC2 to a combination of CDA series and

 D3RF/D3WF series units

\triangle CAUTION

- When in inter-cosmenectint

 - intomation tup to sensors can be acauried.

8. System Configuration Example

- The UC2 can be inter-connected to up to a total of 16 sensors. (One CDA displace

 - acquired.

9. Specifications

10. For details on the support tor the China RoHS directive the Administrative Mea
sure on the Control of Pa
he following websit htps://www.optex-fa.com/rons_cn/

OPTEX FA CO. , LTD

[Headquarters]
91
Chudoji-Awata-cho Shimogyo-ku Kyoto $600-8815$ JAPAN TEL +81-75-325-1314 FAX +81-75-325-2936
https://www.optex-fa.com

[^0]: To perform D3WF (module number: 2) first-point teaching
 To set the near threshold of the CD22 (module number: 3) to 12.34

[^1]: 2. Supports the dispay yunction of op Prexfalo-Lnk masier
[^2]: * RO=Read Only, RW=ReadWrite, WO=Write Only

