

Operating Instructions C-Box/2A Controller for ILD 1420, ILD 1750, ILD 1900, ILD 2300 and confocalDT IFC2422 series

MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Koenigbacher Str. 15

94496 Ortenburg / Germany

Tel. +49 (0) 8542 / 168-0 Fax +49 (0) 8542 / 168-90 info@micro-epsilon.com www.micro-epsilon.com

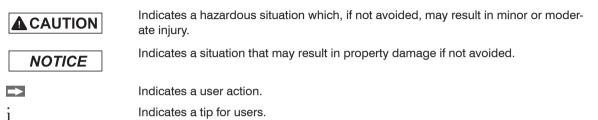
Contents

1.	Safety	7
1.1	Symbols Used	7
1.2	Warnings	
1.3	Notes on CE Marking	
1.4	Intended Use	
1.5	Proper Environment	8
2.	Functional Principle, Technical Data	
2.1	Functional Principle	
2.2	Technical Data	
-	-	
3.	Delivery	
3.1	Unpacking, Included in Delivery	
3.2	Storage	
4.	Installation and Mounting	13
4.1	Dimensional Drawing	13
4.2	Electrical Connections, LEDs	
4.3	Laser on	
5.	Operation	
5.1	Getting Ready for Operation	
5.2	Installation of USB Driver	
5.3	Software Update	
5.4	Operation Using Ethernet 5.4.1 Requirements	
	5.4.2 Access via Ethernet	
	5.4.3 Measured Value Presentation with Web Browser	
5.5	Programming Using ASCII Commands	
5.6	Timing Behavior, Flow of Measurement Values	

6.	Setting Controller Parameters	30
6.1	Preparation for Setting the Options	
6.2	General Overview	
6.3	Inputs	
	6.3.1 Sensor 1, Sensor 2	
	6.3.2 Digital Input	
6.4	Data Recording	
	6.4.1 Measurement Task	
	6.4.2 Measuring Rate	
	6.4.3 Error Handling	
6.5	Processing	
	6.5.1 Filter/Averaging	
	6.5.2 Mastering/Zeroing	
	6.5.3 Trigger Mode	
	6.5.4 Synchronization	
	6.5.5 Output Data Rate	
6.6	Outputs	
	6.6.1 Digital Interface Selection	
	6.6.2 Data Selection Ethernet and Data Selection USB	
	6.6.3 Settings Ethernet	
	6.6.4 Settings USB	
	6.6.5 Digital Outputs 6.6.6 Analog Output 1. Analog Output 2	
6.7		
0.7	System Settings 6.7.1 Unit, Language	
	6.7.1 Onit, Language	
	6.7.3 Load Settings	
	6.7.4 Manage Settings on PC	
	6.7.5 Reset	
6.8	Info	
0.0	****	
7.	Software Support with MEDAQLib	55
8.	Liability for Material Defects	56
9.	Service, Repair	56
10	Deservation in a Discover	
10.	Decommissioning, Disposal	

Appendix

A 2 ASCII Communication with Sensor A 2.1 General A 2.2 Data Protocol A 2.3 Commands Overview A 2.3.1 General Commands A 2.3.1.1 Controller Information	
A 2.2 Data Protocol A 2.3 Commands Overview A 2.3.1 General Commands	60 65 67 67 67 68 68 68 68
A 2.3 Commands Overview A 2.3.1 General Commands	65 67 67 67 68 68 68 68 68 68 68 68
A 2.3.1 General Commands	67 67 68 68 68 68 68
A 2 3 1 1 Controller Information	
A 2.3.1.2 Search Sensor	
A 2.3.1.3 Sensor Information	68 69
A 2.3.1.4 Read All Settings	69
A 2.3.1.5 Language Setting	69
A 2.3.1.6 Synchronization	
A 2.3.1.7 Booting the Controller	69
A 2.3.2 Triggering	69
A 2.3.2.1 Trigger Selection	69
A 2.3.2.2 Trigger Level	70
A 2.3.2.3 Number of Measuring Values Displayed	70
A 2.3.2.4 Software Trigger Pulse	70
A 2.3.3 Interfaces	71
A 2.3.3.1 Ethernet	
A 2.3.3.2 Setting the Measured Value Server	71
A 2.3.3.3 Baudrate	
A 2.3.3.4 Find C-Box/2A	71
A 2.3.4 Handling of Setups	71
A 2.3.4.1 Save Parameter	71
A 2.3.4.2 Load Parameter	72
A 2.3.4.3 Default Settings	72
A 2.3.5 Measurement	72
A 2.3.5.1 Measurement Mode	72
A 2.3.5.2 Measuring Rate	72
A 2.3.5.3 Measured Value Averaging Controller	73
A 2.3.5.4 Measured Value Averaging Sensor	73
A 2.3.5.5 Setting Masters / Zero	


	A 2.3.6	Data Output	74
		A 2.3.6.1 Selection Digital Output	74
		A 2.3.6.2 Output Data Rate	74
		A 2.3.6.3 Scale Output Values	74
		A 2.3.6.4 Error Processing	75
		A 2.3.6.5 Data Selection for USB	
		A 2.3.6.6 Data Selection for Ethernet	
		A 2.3.6.7 Function Selection Multifunctional Input	
		A 2.3.6.8 Activate Error Output, Switching Output 1	
		A 2.3.6.9 Activate Error Output, Switching Output 2	
		A 2.3.6.10 Limit Values	
		A 2.3.6.11 Data Selection	
		A 2.3.6.12 Output Range	
		A 2.3.6.13 Two-point Scaling	
		A 2.3.6.14 Send Command to Connected Sensor	
	A 2.3.7	Laser	
		A 2.3.7.1 Laser off / Laser on	81
	A 2.3.8	Error Values	82
		A 2.3.8.1 Error Values via USB	82
		A 2.3.8.2 Error Values via Ethernet	82
A 3		Menu	
A 3.1		1e	
	A 3.1.1	Input	83
	A 3.1.2	Measurement Configuration	
	A 3.1.3	System Configuration	
	A 3.1.4	Data Selection	
A 3.2		ngs	
	A 3.2.1	Inputs	
	A 3.2.2	Data Recording	
	A 3.2.3	Processing	
	A 3.2.4	Outputs	
	A 3.2.5	System Settings	
A 3.3		surement	
	A 3.3.1	Measurement Configuration	
	A 3.3.2	Channel Selection	
	<u>A</u> 3.3.3	Auto Zero	
A 3.4	lah Info		94

1. Safety

System operation assumes knowledge of the operating instructions.

1.1 Symbols Used

The following symbols are used in these operating instructions:

1.2 Warnings

Connect the power supply and the display/output device according to the safety regulations for electrical equipment.

- > Risk of injury
- > Damage to or destruction of the controller

NOTICE

The supply voltage must not exceed the specified limits. > Damage to or destruction of the controller

Avoid shocks and impacts to the controller.

> Damage to or destruction of the controller

1.3 Notes on CE Marking

The following apply to the C-Box/2A:

- EU Directive 2014/30/EU
- EU Directive 2011/65/EU, "RoHS"

Products which carry the CE mark satisfy the requirements of the EU directives cited and the relevant applicable harmonized European standards (EN). The controller is designed for use in industrial environments.

The EU Declaration of Conformity is available to the responsible authorities according to EU Directive, article 10.

1.4 Intended Use

- The C-Box/2A is designed for industrial use in automated manufacturing and machine monitoring. It is used for
 - processing 2 digital input signals, e. g. thickness measurement
 - filtering of measurements
- The controller must only be operated within the limits specified in the technical data, see 2.2.
- The system must be used in such a way that no persons are endangered or machines and other material goods are damaged in the event of malfunction or total failure of the system.
- Take additional precautions for safety and damage prevention in case of safety-related applications.

1.5 Proper Environment

- Protection class: IP40 1
- Temperature range:
- Operating: +5 ... +50 °C (+41 ... +122 °F)
- Storage: 0 ... +50 °C (+32 ... +122 °F)
- Humidity: 5 95 % (non condensing)
- Ambient pressure: Atmospheric pressure

The protection class is limited to water (no penetrating liquids or similar).

1) Only with sensor cable connected.

2. Functional Principle, Technical Data

2.1 Functional Principle

The C-Box/2A is used for processing two digital input signals.

Features:

- Processing of 2 input signals
- Programmable via Ethernet (web pages)
- Semi-automatic sensor detection for MICRO-EPSILON sensors with digital output
- Triggering
- Ethernet interface with TCP and UDP protocols
- USB interface
- D/A converter of the digital measurements, output via current and voltage interface

The C-Box/2A is installed in a stable aluminium case.

Two digital sensors of the same series can be directly connected to the C-Box/2A via RS422.

Both sensors are synchronized via the C-Box/2A; the C-Box/2A is the master.

The parameterization of all inputs and outputs on the C-Box/2A is performed via a Web interface.

An internal time base also enables the calculation of measurement results of different measuring frequencies.

Model	C-Box/2A	
Connections	 2 Sensor connectors (HD-Sub, 15-pin), 2 RS422 interfaces 1x Ethernet (PC, 100 Mbit/s), 1x USB 2.0, type B, max. 12 Mbit, 1 plug-in terminal block 16-pin External power supply External laser on/off External trigger input 2 analog outputs (current or voltage) 1 external multi function input 1 external trigger input, HTL and TTL compatible (measurement output, edge) Input voltage TTL ≤ 0.7 V / HTL ≤ 3.0 V > trigger not active TTL > 2.2 V / HTL > 8.0 V > trigger active input current 3.0 mA max. input frequency 100 kHz max. 2 switching outputs 	
Supported sensors	Sensors of the ILD 1420 series with a measuring rate of 0.25 4 kHz, sensors of the ILD 1750 series with a measuring rate of 0.3 7.5 kHz, sensors of the ILD 1900 series with a measuring rate of 0.25 10 kHz and sensors of the ILD 2300 series with a measuring rate of 1.5 49 kHz	
	Filter: average moving 2512 / recursive 232768, Median 3,5,7,9	
Functions	Zero, mastering, synchronization	
	Scaling analog outputs	

2.2 Technical Data

Model	C-Box/2A
Analog output	 1 current output per connected sensor 4 - 20 mA 1 voltage output per connected sensor; programmable: Unipolar 0 - 5 V / Unipolar 0 - 10 V Bipolar ± 5 V / Bipolar ± 10 V Tolerance of current and voltage output: 0.04 %
Laser switch off	 Switch respectively voltage input: switching input connected with > laser = on switching input open > laser = off input voltage < 3 V (HTL) > laser = on input voltage > 8 V (HTL) > laser = off
Firmware	Measurement configurations can be saved (max. 8) two languages (English, German), can be updated
LED	For successful connection controller/sensor, Ethernet
Power supply	 13 – 30 VDC for full functionality, power consumption max. 200 mA without sensor 10 – 13 VDC with reduced DA converter function, power consumption max. 200 mA without sensor, analog output 0 - 5 V or ± 5 V only Reverse polarity protection No galvanic isolation, all GND signals are connected internally and with the housing
Power consumption sensors	Maximum two sensors from internal power supply
Weight	Appr. 210 g
Case dimensions	Appr. 103 x 39 x 106 mm
Protection class	IP40

Model		C-Box/2A
Tomporature range	Operating	+5 +50 °C (+41 +122 °F)
Temperature range	Storage	0 +50 °C (+32 +122 °F)
Relative air humidity		5 95 %, non-condensing

3. Delivery

3.1 Unpacking, Included in Delivery

- 1 C-Box/2A
- 1 Operating instructions
- 1 16-pin. female terminal box (cable clamp) with locking function type Weidmüller B2CF 3.50/16/180 SN BK BX
- Carefully remove the components of the measuring system from the packaging end ensure that the goods are forwarded in such a way that no damage can occur.
- Check for completeness and transport damage immediately after unpacking.
- In case of damage or missing parts, please contact the supplier immediately.

3.2 Storage

Temperature range storage: $0 \dots +50 \ ^{\circ}C \ (+41 \dots +122 \ ^{\circ}F)$ Humidity: $5 - 95 \ ^{\circ}(non-condensing)$

4. Installation and Mounting

4.1 Dimensional Drawing

- Pay attention to careful handling during
- 1 the installation and operation.

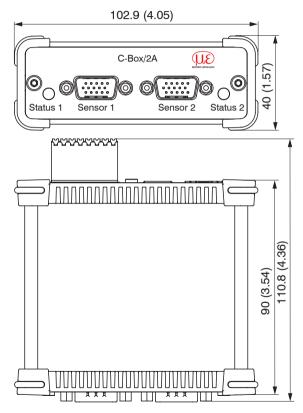


Fig. 1 Dimensions C-Box/2A, dimensions in mm (inches), not to scale

4.2 Electrical Connections, LEDs

Pin	Signal
1	RS422 TxD-
2	RS422 TxD+
3	RS422 RxD-
4	RS422 RxD+
5	GND
6	RS422 TRG+
7	RS422 TRG-
8	5V CMOS output (reserve, do not connect)
9	Power supply +24 V via power connection
10	Power supply +24 V via power connection
11	Multfunction output TTL or HTL compatible
12	Laser on, HTL compatible
13	NC
14	NC
15	GND

Fig. 2 Pin assignment sensor connector (2), sensor 1 resp. sensor 2

LED color	Description
Off	Sensor not connected
Green	Sensor in measurement mode and within the measurement range
Red	Sensor in measurement mode and sensor outside the measurement range
Orange	Sensor in setup mode (no measurement output)

Fig. 3 Description LED (1) for sensor 1 resp. sensor 2

Pin	Designation	Signal
1	24VDC	Power
2	GND	GND
3	TRG IN	Trigger in
4	MF IN	Multi function input
5	OUT S1	Switching output 1
6	Laser	Laser
7	OUT S2	Switching output 2
8	GND	GND
9	OUT V1	Measurement value voltage 1
10	GNDA	Analog GND1
11	OUT I1	Measurement value current 1
12	Shield	Schirm
13	OUT V2	Measurement value voltage 2
14	GNDA	Analog GND2
15	OUT I2	Measurement value current 2
16	Shield	Schirm

Fig. 4 Pin assignment 16-pin terminal block (4), type Weidmüller (B2CF)

LED color	Description	
Off	no power supply (power off)	
Green	Power on, data output on USB interface not active or data output on USB interface active and data communication error free	
Orange	Power on, data output on USB interface active, data communication faulty or disconnected	
Red	Power on, data output on USB interface active, USB cable not connected or communication disconnected	

Fig. 5 LED description for power and USB status (3)

4.3 Laser on

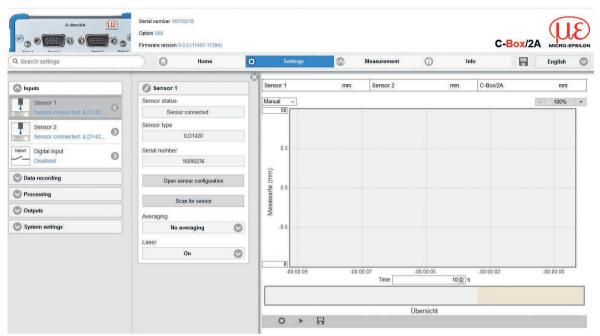


Fig. 6 View Settings - Inputs - Sensor 1/2 - Laser

The measuring laser on the sensor is activated via an optocoupler input. This is advantageous if the sensor has to be switched off for maintenance or similar. Switching can be done with a transistor (for example open collector in an optocoupler) or a relay contact.

Connect pin 6 Laser with pin 8 GND by a jumper.

The laser is off unless pin 6 is electrically connected to pin 8.

5. Operation

5.1 Getting Ready for Operation

The C-Box/2A must be installed in accordance with the installation instructions, see 4, and connected to an automation unit, e.g. PLC, and the power supply in compliance with the connection instructions.

After switching on the operating voltage, the C-Box/2A performs an initialization sequence and goes into the measurement operating mode afterwards.

The laser operation on optical sensors is only indicated at the sensor by an LED. If no measured values are transmitted, check whether the sensors are switched on and whether a target is in the measuring range of the sensor.

5.2 Installation of USB Driver

You will find the driver C-Box/2A WinUSB under:

www.micro-epsilon.de/link/software/medaqlib

- Connect C-Box/2A to the usb port of your computer.
- Connect C-Box/2A to power supply.
- Open Windows system control.
- Go to device manager.

You will see a device with a question mark (unknown device).

Right mouse click on it.

A menu opens.

- Select Properties.
- Select Drivers.
- Select Update driver.
- Browse to the directory with the downloaded Win usb drivers.
- Click on ok.
- Wait until installation will finish.

If the installation is done properly, you will find C-Box/2A in the device manager, see Fig. 7.

Fig. 7 View Device Manager after installing the USB driver

5.3 Software Update

- The software can only be updated via USB.
- Download the USB driver from the homepage, see 5.2 and unpack it.
- Start the installation program.
- Search for the C-Box.

L

- Choose the update file.
- Start the installation.
- Wait until the installation is complete.

Sensor / (Controller				
Type:	C-Box			~	Scan
Selected:	C-Box #0 (S/N 16	070002)			~
Firmware version:	Article number: Serial number: Firmware version: Software version: Webpage version:				
Firmware f	ile				
Name: C:\Users\11000237\Desktop\C-Box_3_29\C-Box_2A_V0003-0029-10				029-100	
Firmware version:	Date of creation: Article number: Serial number: FPGA version: Software version: Webpage version:	2018-09-18 2420074 <any c-box=""> 3 29 10021</any>			< >
Log messi	ages				
Current ser Update file		W: 2; SW: 23; WP: 7921 W: 3; SW: 29; WP: 10021			^
					~

Fig. 8 View MICRO-Epsilon Update Sensor

5.4 Operation Using Ethernet

Dynamic web pages are generated in the C-Box/2A which contain the current settings of the C-Box/2A and the peripherals. The operation is only possible while there is an Ethernet connection to the C-Box/2A.

5.4.1 Requirements

You need a web browser (e.g. Mozilla Firefox or Internet Explorer) on a PC with a network connection. Decide about connecting the C-Box/2A to a network or directly to a PC.

The C-Box/2A is delivered as standard with a fixed IP address. If you do not require a static IP address, you can enable DHCP (Dynamic Host Configuration Protocol) as automatic IP address allocation. The controller will be assigned an IP address by the DHCP server, see 5.4.2.

If you have set your browser so that it accesses internet through a proxy server, please add the IP address of the controller to the IP addresses that should not be routed through the proxy server in the settings of the browser.

Parameter	Description
Address type	Static IP address (standard) or dynamic IP address (DHCP, Standard)
IP address	Static IP address of the controller (only active if no DHCP is selected).
Gateway	Gateway to the other subnets
Subnet mask	Subnet mask of the IP subnet

Fig. 9 Basic Ethernet settings

5.4.2 Access via Ethernet

Direct connection to PC, controller with static IP	Network	
PC with static IP PC with DHCP Controller with dynamic IP, PC with		Controller with dynamic IP, PC with DHCP
Connect the C-Box/2A ("Ethernet" female c net direct connection (LAN). Use a LAN cal	Connect the controller with a switch (Intranet). Use a LAN cable with RJ-45 connectors.	

Operation

Interactive web pages for setting the C-Box/2A and peripherals are now shown in the web browser, see Fig. 11 ff.
--

Parallel operation with web browser and ASCII commands is possible; the last setting applies. Do not forget to save.

Operation

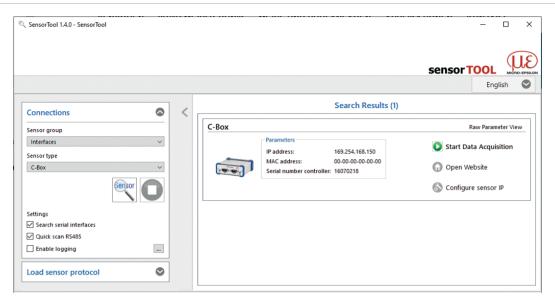


Fig. 10 sensorTOOL auxiliary program for sensor search

The sensorTOOL x.x.x program is available online at http://www.micro-epsilon.com/service/download/ software.

The sensorTOOL x.x.x program searches the available interfaces for connected controllers.

You can access features in the upper navigation bar (Settings, Measurement and Info).

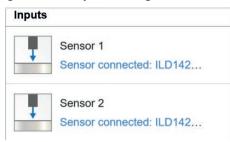
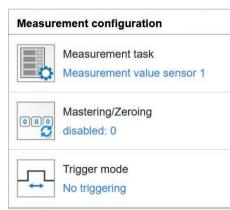

The appearance of the web pages can change depending on the functions and the sensors connected. Each page contains descriptions of the parameters and thus tips to configure the web page.

Fig. 11 First interactive web page after calling the IP address

All settings in the web page are applied immediately in the C-Box/2A after clicking the button Submit.


The controller is active and supplies measurement values. The currently running measurement can be controlled using the function buttons in the diagram control section.

The Home menu provides you with an overall view of inputs set or connected sensors, the measuring configuration set, system configuration and data selection, see also operating menu, see A 3.

Inputs menu

The inputs section shows in blue text the current settings for connected sensors, see 6.3.1.

Measurement configuration menu

The measurement configuration section shows in blue text the current measurement task, see 6.4.1 and additional processing configurations, such as mastering/zeroing and trigger mode.

System configuration

Digital interface selection Web diagram

Data selection			
ETHERNET	Data selection Ethernet Sensor 1: Measurement value		
USB	Data selection USB Sensor 1: Measurement value		

System configuration menu

The system configuration section shows in blue text the currently selected digital interface, see 6.6.1.

Data selection menu

The data selection section shows in blue text the currently selected data for the Ethernet and USB interfaces, see 6.6.2; that data are required for further processing.

5.4.3 Measured Value Presentation with Web Browser

Start the display of measurement values by using the Measurement tab.

Fig. 12 Presentation of the measurement and calculation results

- 1 Function buttons in the diagram control section:
 - Clicking the button starts the measurement.
 - The icon means: Measurement is running.
 - Clicking the button interrupts recording and pauses the diagram; data selction and zoom function are still possible.

- Clicking the button opens the Windows selection dialog for file name and storage location, which allows you to save the last 10,000 or 50,000 values in a CSV file (separated by semicolons).
- 2 The check boxes in the Auto Zero window/selection set the selected channel to zero only in the diagram. This setting does not affect the C-Box/2A or connected sensors.
- 3 The check boxes in the Channel Selection window/selection allow you to specify the channels that you would like displayed in the diagram.
- 4 To scale the measurement values axis (Y axis) in the graphic, Automatic (= auto scaling) or Manual (= manually set) are available.
- 5 In the Measurement task drop-down menu of the Measurement configuration window/ selection, you can specify the measurement task you would like to select, see 6.4.1.
- 6 The search function permits time-saving access to functions and parameters.
- 7 The text boxes above the graphic display the current values for distance, exposure time, current measuring rate, display rate and time stamp.
- 8 Mouse over function. When stopped and the mouse is moved across the graphic, points on the curve are marked with a circle symbol and the associated values are displayed in the text boxes above the graphic. Peak intensity is also updated.
- 9 Scaling of the X axis can be defined by using an input field below the time axis.
- 10 Scaling of the X axis: When a measurement is running, the entire signal can be enlarged (zoomed) using the left slider. If the diagram is stopped, the right slider can be used, as well.

The zoom window can also be dragged with the mouse from the center of the zoom window (crossed arrows).

By letting the diagram display run in a separate tab or browser window, you avoid having to restart the display every time.

Click the Start button to begin displaying measurement results.

Click the Stop button to stop displaying measurement results.

Click Save button to save the previously accumulated measurement and calculation results in a CSV compatible file inclusive timing information.

The measurement values are saved after the measurement is stopped. The measured values are stored with a dot as decimal mark if the language is set to English, otherwise a comma is used.

Only a limited number of measured values can be stored (about 50,000).

The oldest values will be overwritten when more values are captured.

Each curve can be deactivated and activated using the associated checkbox (checkmark). In addition, the horizontal scrolling (slider) is possible in the diagram.

In the Measurement task drop-down menu of the Measurement configuration window/selection, you can specify the measurement task you would like to select.

The check boxes in the Channel Selection window/selection allow you to specify the channels that you would like displayed in the diagram.

The check boxes in the Auto Zero window/selection set the selected channel to zero only in the diagram. This setting does not affect the C-Box/2A or connected sensors.

The y-axis can be scaled manually or by using the Autoscale function.

5.5 Programming Using ASCII Commands

As an additional feature, you can program the controller via an ASCII interface, physically an RS422. For this purpose, the controller must be connected to a PC/PLC and an RS422 serial interface using a suitable interface converter, see A 1.

Observe the correct RS422 basic setting in the programs used.

After the connection has been established, you can transmit commands listed in the Appendix, see A 2, to the controller using a terminal program.

5.6 Timing Behavior, Flow of Measurement Values

Without triggering, the controller requires 5 cycles to process the C-Box values:

The cycle time depends on the C-Box setting and values range from 0.4 to 80 kHz.

6. Setting Controller Parameters

6.1 Preparation for Setting the Options

You can program the C-Box/2A in various ways:

- in a web browser using the <code>sensorTOOLx.x.x</code> program and the web interface.
- with an ASCII command set and terminal program using RS422.
- If you do not permanently save the programming in the sensor, the settings are lost when the sensor is
- turned off.

Inputs	Sensor 1, Sensor 2, Digital input		
Data recording	Measurement task, Measuring rate, Error handling		
Processing	Filter/Averaging, Mastering/Zeroing, Trigger mode, Synchronization, Output data rate		
Outputs	Digital interface selection, Data selction Ethernet, Data selection USB, Settings Ethernet, Settings USB, Digital Outputs, Analog output 1, Analog output 2		
System settings	Language & Unit, Save settings, Load settings, Manage settings on PC, Reset		

6.2 General Overview

6.3 Inputs

► On the Settings tab, switch to the Inputs menu.

6.3.1 Sensor 1, Sensor 2

Sensor 1, Sensor 2	Sensor status / Sensor type / Serial number	Open sensor configu- ration Scan for sensor	Selection of the connected sensor. It supports sensors of the ILD2300, ILD1420, ILD1750, ILD1900, IFC2421 and IFC2422 series. For ILD1420 and ILD1750 sensors it is possible to open a configuration page. For this, the digital interface must be deacti- vated. If no sensor is shown, one has the possibility to search for sensors, too.
	Averaging	No averaging	-
		Moving average over N values	2 4 8 16 32 64 128
		Recursive average over N values	Value
		Median filter over N values	3 / 5 / 7 / 9
	Laser	On / Off	Turns on or off the laser light source on the sensor.

Fields with a gray background require a selection.

Fields with dark border require the specification of a value.

Filter / averaging in the sensor or controller

Several filter types are available for the measured values. Filtering prevents the noise of the signal and ensures better resolution, see 6.5.1.

Moving average

The arithmetic mean value M_{g^l} is generated and output via the selectable filter width N of consecutive measured values.

$$M_{gl} = \frac{\sum_{k=1}^{N} MV (k)}{N}$$

$$M_{gl} = \frac{\sum_{k=1}^{N} MV (k)}{N}$$

$$M_{gl} = \frac{MV}{N}$$

Each new measured value is added, and the first (oldest) value is removed from the averaging (from the window). This produces short response times for measurement jumps.

Example: N = 4

$$\begin{array}{c} \text{Measured values} \\ \text{Measured values} \\ \hline \\ \frac{2, 2, 1, 3}{4} = M_{\text{mov}}(n) \\ \end{array} \\ \begin{array}{c} \text{Measured values} \\ \hline \\ \frac{2, 1, 3, 4}{4} = M_{\text{gl}}(n+1) \\ \end{array} \\ \begin{array}{c} \text{Output value} \\ \end{array} \end{array}$$

• Moving average in the controller C-Box/2A allows only potentials of 2 for N. The highest averaging value is 512.

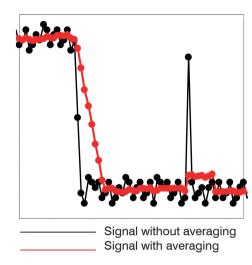


Fig. 13 Moving average, N = 8

Application tips

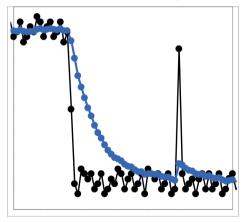
- Smooths measured values
- The effect can be finely controlled in comparison with the recursive averaging.
- With uniform noise of the measured values
- without spikes
- At a slightly rough surface, in which the roughness should be eliminated.
- Also suitable for measured value jumps at relatively low settling time

Recursive average

Each new metric MW is weighted to the (n-1) value of the previous average.

Formula:

$$M_{rec} (n) = \frac{MV_{(n)} + (N-1) \times M_{rec (n-1)}}{N} \qquad N = averaging value, N = 1 ... 32768$$


$$n = measurement index$$

$$M_{rec} = average value or output value$$

Each new measurement value MV(n) is added, as a weighted value, to the (n-1)-fold of the previous averaging value.

MV - measured value

Recursive averaging allows for very strong smoothing of the measurements, however it requires long response times for measurement jumps. The recursive average value shows low-pass behavior.

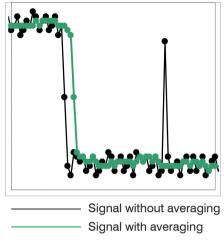
Signal without averaging Signal with averaging

Fig. 14 Recursive average, N = 8

Application tips

- Permits a high degree of smoothing of the measurement values. However, it requires extremely long transient recovery times for measured value jumps (low-pass behavior)
- Permits a high degree of smoothing for noise without strona spikes

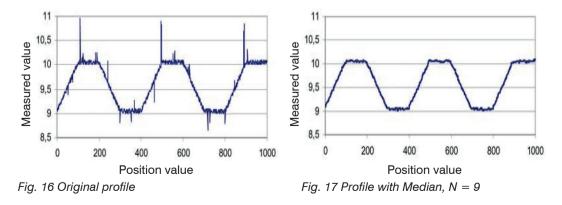
1 32768


- For static measurements, to smooth signal noise
- For dynamic measurements on rough surfaces, to eliminate the roughness, e. g. roughness of paper
- For the elimination of structures, e. g. parts with uniform grooves, knurled rotary parts or roughly milled parts
- Unsuitable for highly dynamic measurements

Median

The median of the pre-set filter width N (N = 3, 5, 7, 9) of the measurement values is calculated. For this purpose, the incoming measurement values are re-sorted after each measurement. The median value is then output as the median. If an even value is selected for filter width N, the two median measurement values are added and divided by two.

Example: Median of five measurement values


... 0 1
$$(2 \ 4 \ 5 \ 1 \ 3) \rightarrow$$
 Sorted measurement values: 1 2 $(3 \ 4 \ 5)$ Median (n) = 3
... 1 2 $(4 \ 5 \ 1 \ 3 \ 5) \rightarrow$ Sorted measurement values: 1 3 $(4 \ 5 \ 5)$ Median (n+1) = 4

Application tips

- The measurement value curve is not smoothed to a great extent, used to eliminate spikes
- Suppresses individual interference pulses
- In short, strong signal peaks (spikes)
- Also suitable for edge jumps (only minor influence)
- For rough, dusty or dirty environment, to eliminate dirt or roughness
- Further averaging can be used after the median filter

6.3.2 Digital Input

Selecting the function of the multifunction input:

Digital input	Function	Disabled	The multifunction input has no function.		
		Master c-Box/2A value	Multifunction input is master pulse input for the C-Box/2A. For this function to work mastering must be en- abled, see 6.5.2.		
		Forward to sensor 1	Multifunction input is forwarded to the corresponding input of the connected sensor 1.		
		Forward to sensor 2	Multifunction input is forwarded to the corresponding input of the connected sensor 2.		
		Forward to sensor 1 and 2	Multifunction input is forwarded to the corresponding inputs of the connected sensors 1 and 2.		
	Logic for digital input	Low-level logic	Settings, see also Trigger mode chapter, see 6.5.3 or		
		High-level logic	Synchronisation chapter, see 6.5.4.		

Fields with a gray background require a selection.

6.4 **Data Recording**

On the Settings **tab**, **switch to the** Data recording **menu**.

Measurement Task 6.4.1

Specifies which value (possibly mastered or averaged before) will be output as C-Box/2A measurement value:

	Measurement task	Measuring mode	Measurement value sensor 1	Measured value of the sensor connected to sensor 1 connection, i.e., the C-Box/2A value includes the value from sensor 1. If you operate exclusively one sensor on the C-Box/2A, it must be connected to sensor 1 connection.
			Thickness sensor 1-2	Forms the difference between the two distance values of the sensors 1/2 in direct or diffuse reflection, with two-sided distance measurement, and outputs the result as a thickness value.
				The thickness calculation requires as starting value the thickness of a reference object; this value is to be defined as master value.
Fields with a gray background re- quire a selection.			Step sensor 1-2	Forms the difference between the two distance values of the sensors 1/2 in direct or diffuse reflection, with one-sided distance measurement, and outputs the result as height value.
Fields with dark border require the				Value C-Box/2A = Value sensor 1 minus value sensor 2
specification of a value.	$\overset{\bullet}{l}$ The selected m	easuring program is	s used as the standard	measuring program on startup.

Value

Measuring rate	Measuring rate (kHz)	0.5 / 1.0 / 2.0 / 4.0	When synchronization is switched off, the measuring rate can be set freely. Value range: from 0.4 to 80 kHz. Otherwise, the possible measuring rates are specified by the connected sensors / controllers, see Fig. 18.
	Data rate Web diagram (kHz)	0.5 / 1.0	The Web diagram interface uses a slower data rate for data transmission. So for higher measuring rates not all the measured values will be visible in the diagram or saved to file.

640 Measuring Data

Sensor / Controller	Measuring rate
ILD 1420	0.25 / 0.5 / 1 / 2 / 4 kHz
ILD 1750	0.3 7.5 kHz (continuously adjustable)
	7.5 kHz / 5 kHz / 2.5 kHz / 1.25 kHz / 625 Hz / 300 Hz (adjustable)
ILD 1900	0.25 10 kHz (continuously adjustable)
	10 kHz / 8 kHz / 4 kHz / 2 kHz /1.0 kHz / 500 Hz / 250 Hz (adjustable)
ILD 2300	1.5 / 2.5 / 5 / 10 / 20 / 30 / 50 kHz. Please note that a measurement frequency of
	50 kHz involves a reduction of the sensor measuring range.
confocalDT IFC2422	Continuously adjustable 6.5 kHz 0.1 kHz, step size 1 Hz

Fig. 18 Preset measuring rates

Fields with a gray background require a selection.

6.4.3 Error H	andling			
Error handling	Error handling on wrong measur- ment values	Error output, no value		If a valid metric can not be ob- tained, an error value is output. If this hinders further processing, al-
	ment values	Hold last valid value	Value	ternatively the last valid measured value can be held over a certain
		Hold last valid value for	rever	number of measuring cycles, that is, repeatedly output.

Fields with a gray background require a selection.

6.5 Processing

On the Settings **tab**, **switch to the** Data recording **menu**.

6.5.1 Filter/Averaging

Filter/Averaging	Averaging	No averaging		Measurements are not averaged.
		Moving aver- age	2 4 8 16 32 64 128 256 512	About the selectable filter width N of consecutive measured values the arithmetic mean Mgl is formed and output. Each new reading is added and the first (oldest) read- ing removed from the averaging.
		Recursive average	2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768	Each new metric MW (n) is weighted to the (n-1) -fold of the previous average.
		Median filter	3 5 7 9	The median is formed from a preselected filter width N of mea- sured values. For this purpose, the incoming measured values are re-sorted after each measure- ment. The mean value is then out- put as median. If an even value is selected for the filter width N, then the middle two metrics are added together and divided by two.

Fields with a gray background require a selection.

1

Value

Fields with dark border require the specification of a value. These settings are for the C-Box/2A only. They do not affect the connected sensors.

There are several filter types available for the measured values. Filtering reduces the noise of the measurement signal and thus ensures better resolution. The filter width is used to set the number of measured values that the filter affects.

You will find further information respectively adjustment possibilities in the Chap. Sensor 1, Sensor 2, see 6.3.1.

6.5.2 Mastering/Zeroing

Mastering/Zeroing	Mastering is	Master	Master value (mm)			
	disabled			Trigger zeroing or mastering. Master value range: -1024 to 1024 mm.		
	enabled		Reset master value	Cancel zeroing or mastering.		

6.5.3 Trigger Mode

Trigger mode	Selected mode	No triggering		See below for description.
		Level-triggering Value		
		Edge triggering		
		Software triggering		

Level triggerung

A continuous output of the measured value is made as long as the selected level is present. After that the data output stops. The trigger is adjustable to high level / low level.

Fields with a gray background require a selection.

Edge triggering

After the trigger event, the sensor outputs the previously set number of measured values or starts a continuous measurement output. It is possible to trigger on the rising edge / falling edge.

Value Fields with dark border require the specification of a

specification of a value.

Software triggering

A measured value output is started as soon as a software command is triggered. The trigger time is defined inaccurate. After the trigger event, the sensor outputs the previously set number of readings or starts a continuous readout.

Active logic level

Logic Level Sets, at which threshold the trigger switches:

Low-level logic (LLL)

 \leq 0.7 V: Low level

 \geq 2.2 V: High level

High-level logic (HLL)

 \leq 3.0 V: Low level

 \geq 8.0 V: High level

Number of readings

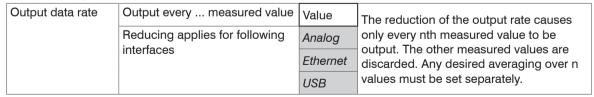
1...16382: Number of readings to be output after a trigger event

16383: Start of an infinite readout after a trigger event

0: Stop the trigger and ending the infinite measurement output

- For all measurement tasks, it must be remembered that the combination of level / edge triggering and
- L external synchronization is not is possible.

Synchronization	Synchronization	No synchroni.	zation	Sync off. The measuring rate can be freely adjusted. Value range: from 0.4 to 80 kHz.		
		Internal synch	Internal synchronization		The C-Box/2A forms the time base.	
		External synchroniza- tion	Low-level logic (LLL)The Sychro ≤ 0.7 V: Trigger not activeis received ≥ 2.2 V: Trigger activeternal signal		The Sychronization signal is received from an ex- ternal signal source, e.g. function generator.	


~ - 4

External synchronization is not possible when edge or level triggering is active.

All sensors can be synchronised from the C-Box/2A. A synchronization between them of sensors of the same type is then no longer necessary. Sensors with different measuring ranges from the same series can be synchronized.

The C-Box/2A operates as Master; the sensors operate as Slave. The small time offset of the measured value between individual sensors no longer applies. The controller only reacts to the edge of a synchronization signal.

6.5.5 **Output Data Rate**

Fields with a gray background require a selection.

6.6 **Outputs**

On the Settings **tab**, **switch to the** Outputs **menu**.

6.6.1 **Digital Interface Selection**

Digital interface selection	Used interface fo	Used interface for data output						
	Web diagram	Disabled	No metrics are output through the digital interface.					
		Ethernet	Ethernet enables fast, non-real-time data transmis- sion (packet-based data transfer). The meter can be configured via the web interface or by ASCII com- mands, see A 2, via a terminal program.					
		Web diagram	The recorded measurements are displayed in the diagram of the website.					
		USB	The USB interface provides a lower data rate inter- face for the transmission of measured value data. Configuration is via ASCII commands, see A 2.					

For a measured value output with subsequent analysis without immediate process control, the Ethernet 1 interface is recommended. If real-time measurement value output is required for process control, the analog interfaces should be used.

background require a selection.

6.6.2 Data Selection Ethernet and Data Selection USB

Here you can select the data to be transmitted via the digital interfaces.

Use the check box to activate the data to be transmitted.

	Data selection	Data selection	Data selection	From the sum of all available data,
	Ethernet		Sensor 1: Measurement value	those needed for further processing can be selected. These are then output
			Sensor 1: Intensity	sequentially in fixed sequence. Information about data format, output
			Sensor 1: Shutter speed	sequence and further explanations are available in the MEDAQLib operating
	Data a da atian		Sensor 1: Reflectivity	instructions, see 7, or in the operating instructions of MICRO-EPSILON sen-
	Data selection USB		Sensor 2: Measurement value	SORS.
			Sensor 2: Intensity	
			Sensor 2: Shutter speed	
			Sensor 2: Reflectivity	
			C-Box/2A: Measurement value	
			C-Box/2A: Counter	
Fields with a gray background re- quire a selection.			C-Box/2A: Timestamp	
Fields with dark			C-Box/2A: Digital value	
border require the specification of a value.	Box/2A tool.	display and save The C-Box/2A to ssories/C-Box-2A/	ol is available on the MICRO-EPS	iagram. To do so, please use the C- ILON website at https://www.micro-epsi-

Value

Settings Ethernet	Adress type	DHCP	Static IP address	Submit IP settings	The C-Box/2A provides the measured values itself		
	IP address		169.254.168.150	loomingo	as server (transmission type: server / TCP). As		
	Subnet mask		255.255.0.0		a client, a self-created		
	Default gateway		169.254.1.1		program or a tool such as ICONNECT can be		
	Transmission type	Server/TO	CP		used. The documentation of the data format can be found in the MEDAQULib operating instructions of		
	Data port	Value					
	Frames per measure- ment packet	Auto- matic /	Manual		MICRO-EPSILON, see 7. It is possible to set the		
			Value		maximum number of data		
					frames in the measure- ment package. 0 means		
					that the number is deter- mined automatically.		

6.6.3 Settings Ethernet

Fields with a gray background require a selection.

Settings USB	Settings USB Scaling	Standard scaling	For standard cali sensor / controlle	d calibration, the entire measuring range of the ntroller is output.		
		Two-point scaling	Start of range	Value	The two-point scaling requires the specification of the beginning and end of	
			End of range	Value	the range; Value range: from -1024 to 1024 mm. The mini- mum value must be less than the maximum value.	

6.6.4 Settings USB

6.6.5 Digital Outputs

Selecting the function of the fault outputs

	Digitale	Error output 1 /	Level low	See next page for description.
	outputs	Error output 2	Sensor 1: Error output 1	
			Sensor 1: Error output 2	
			Sensor 2: Error output 1	
			Sensor 2: Error output 2	
			Sensor 1: Measurement value	
			Sensor 1: Intensity	
			Sensor 1: Shutter speed	
			Sensor 1: Reflectivity	
			Sensor 2: Measurement value	
ray			Sensor 2: Intensity	
) -			Sensor 2: Shutter speed	
on.			Sensor 2: Reflectivity	
ĸ			C-Box/2A: Measurement value	
the			Level low	
fa			Level high	

Sensor x: Error output y

The value of the selected fault output of the selected sensor is output.

Sensor x: Measurement value

Returns the result of the range check for the metric of the selected sensor. The valid range is determined by the Upper and Lower threshold input fields in mm.

Sensor x: Intensity

Returns the result of the range check for the intensity value of the selected sensor. The valid range is determined by the Upper or Lower threshold input fields in %.

Sensor x: Shutter time

Returns the result of the range check for the exposure time of the selected sensor. The valid range is determined by the Upper or Lower threshold input fields in μ s.

Sensor x: Reflectivity 1

Returns the result of the range check for the reflectivity value of the selected sensor. The valid range is determined by the Upper or Lower threshold input fields.

C-Box/2A: Measurement value

Returns the result of the range check for the C-Box/2A reading. The valid range is determined by the Upper or Lower threshold input fields in mm.

Level low

The error value is already low.

Level high

At the error output the level is always high.

6.6.6 Analog	J Output	1, Analog	Output 2
--------------	----------	-----------	----------

Analog output 1, Analog	Output area	Inactive / 0V 5V / -5V 5V / -10V 10V / 4mA 20mA			Specification of analog output, current or voltage with select- able value range.
output 2	Output signal Fixed output value / Sensor 1: Measurement value / Sensor 1: Intensity/ Sensor 1: Shut- ter speed / Sensor 1: Reflectivity / Sensor 2: Measurement value / Sensor 2: Intensity/ Sen- sor 2: Shutter speed / Sensor 2: Reflectivity / C-Box/2A: Measurement value				Specification of analog output, current or voltage with select- able value range.
	Scaling	Standard scaling			At Standard scaling outputs the entire measuring range of the sensor / controller.
		Two-point scaling	Start of range (mm)	Value	The two-point scaling requires the specification of the begin-
			End of range (mm)	Value	ning and end of the range.

1) Only one measured value can be transmitted.

Fields with a gray background require a selection.

6.7 System Settings

▶ On the Settings tab, switch to the System settings menu.

When programming has been completed, store all settings permanently in a set of parameters to ensure that these settings are available when the sensor is switched on the next time.

6.7.1 Unit, Language

The web interface promotes the units millimeter (mm) and inch when displaying measuring results. You can choose German or English in the web interface. You can change the language in the menu bar.

Fig. 19 Language selection in the menu bar

Language, Unit	Language at startup	Browser / German / English / Chinese / Japanese / Korean	Specifies the language used at startup.
	Unit on the website	Millimeter / Inch	Specifies the unit of the measurement display. The unit has no effect on the sensor itself.

Fields with a gray background require a selection.

6.7.2 Save Settings

All settings on the controller, for example connected sensors and calculation functions can be saved permanently in application programs, so-called setups, in the controller.

	Save settings	Save in the setup number	1/2/3/4/5/6/7/8	Save	Clicking the button saves the set- tings to the selected setup file.
1					

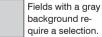
After the programming, store all settings permanently under a setup no.(1/2/3...8) in the controller,

so that they are available again when the C-Box/2A is switched on the next time.

6.7.3 Load Settings

Load settings	Load from setup number	1/2/3/4/5/6/7/8	Load	A click on the button loads the set- tings of the selected setup file.
		All settings / Interface settings only / Mea- surement settings only		

Fields with a gray background require a selection.

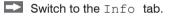


6.7.4 Manage Settings on PC

Use this menu to save a backup copy of the controller data to a PC or to restore backed up setup files to the controller.

Save the controller settings, before exporting or importing data, see 6.7.2.

Manage set- tings on PC	Export set- tings	Export	The Opening C-Box_2A_Set- tings.txt dia- log opens.	All settings of the C-Box/2A are stored in a file.
	Import set- tings	Browse	-	Select an appropriate settings file in the open file dialog.
	Select set- tings	Controller settings Ethernet settings	Import	The settings of the C-Box/2A are read from a file and sent to the C-Box/2A. Only suitable settings are imported.



background require a selection. Fields with dark

border require the Value specification of a value.

6.7.5	Reset			
Reset	Reset to factory defaults	All setups	Reset C-Box/2A	The C-Box/2A is reset to the factory default settings. All setups will be deleted and the default parameters will be loaded.
		Keep interface		The settings for language, password and Ethernet remain unchanged.
	Reboot options	Reboot sensors	Reboot C-Box/2A	The C-Box/2A will be rebooted. The mea- surement is interrupted. Unsaved changes are lost.

6.8 Info

All necessary information, such as company address, telephone and fax numbers and e-mail address, as well as information about serial and version numbers of the controller and connected sensors is available here.

The current operating instructions are available by clicking the left side of the operating instructions menu.

On the right side, all important controller and sensor information is available.

Value Specification of a

value.

C-Box/2A

7. Software Support with MEDAQLib

MEDAQLib (Micro-Epsilon Data Acquisition Library) offers you a documented driver DLL. Therewith you embed the C-Box/2A, in combination with

- Ethernet card
- USB

into an existing or a customized PC software.

MEDAQLib

- contains a DLL, which can be imported into C, C++, VB, Delphi and many additional programs,
- makes data conversion for you,
- works independent of the used interface type,
- features by identical functions for the communication (commands),
- provides a consistent transmission format for all MICRO-EPSILON sensors.

For C/C++ programmers MEDAQLib contains an additional header file and a library file. You will find the latest driver / program routine at:

www.micro-epsilon.com/download/

www.micro-epsilon.de/link/software/medaqlib/

8. Liability for Material Defects

All components of the device have been checked and tested for functionality at the factory. However, if defects occur despite our careful quality control, MICRO-EPSILON or your dealer must be notified immediately.

The liability for material defects is 12 months from delivery. Within this period, defective parts, except for wearing parts, will be repaired or replaced free of charge, if the device is returned to MICRO-EPSILON with shipping costs prepaid. Any damage that is caused by improper handling, the use of force or by repairs or modifications by third parties is not covered by the liability for material defects. Repairs are carried out exclusively by MICRO-EPSILON.

Further claims can not be made. Claims arising from the purchase contract remain unaffected. In particular, MICRO-EPSILON shall not be liable for any consequential, special, indirect or incidental damage. In the interest of further development, MICRO-EPSILON reserves the right to make design changes without notification. For translations into other languages, the German version shall prevail.

9. Service, Repair

If the controller is defective:

If possible, save the current C-Box/2A settings in a parameter set on your PC, see 6.7.4, to reimport them into the C-Box/2A after the repair. The opening of the C-Box/2A is only subjected to the manufacturer. In the cause of a fault cannot be clearly identified, please send the entire measuring system to: MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Koenigbacher Str. 15 94496 Ortenburg / Germany Tel. +49 (0) 8542 / 168-0 Fax +49 (0) 8542 / 168-90 info@micro-epsilon.com www.micro-epsilon.com

10. Decommissioning, Disposal

Remove all supply and output cables from the C-Box/2A.

Incorrect disposal may cause harm to the environment.

Dispose of the device, its components and accessories, as well as the packaging materials in compliance with the applicable country-specific waste treatment and disposal regulations of the region of use.

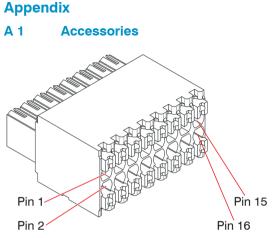
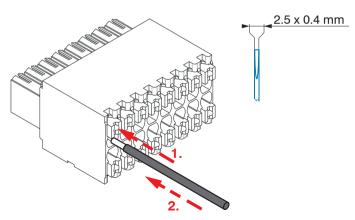
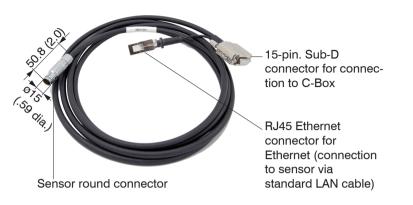



Fig. 20 Pin assignment 16-pin terminal box

Female connector suitable for

- Conductor type solid/fine-stranded, cross section from 0.08 ... 1.5 mm² AWG 28 ... 16
- Conductor type fine-stranded (with insulated/uninsulated ferrule), cross section from 0.25 ... 1 mm² AWG 24 ... 18

Attach the female connector in bench vise as far as possible.


1. Press the orange clamping lever inwards.

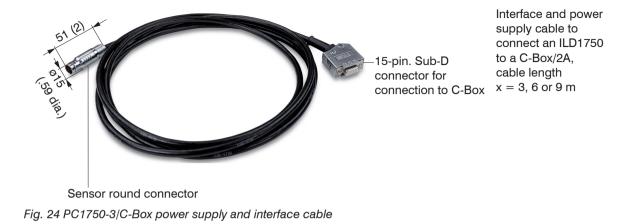
2. Insert the connecting wire into the terminal.

3. Release the operating slot.

- Please use a screwdriver with a
- max. blade width of 2.5 x 0.4 mm.

Fig. 21 Steps for wiring the cable clamp

Interface and power supply cable to connect an ILD23xx to a C-Box/2A, cable length x = 3, 6, 9 or 25 m


Fig. 22 PC2300-3/C-Box/RJ45 power supply and interface cable

You can adjust settings to the sensor via the RJ45 Ethernet connector using the web interface or ASCII adjustments.

15-pin. Sub-D connector for connection to C-Box Interface and power supply cable to connect an ILD1420 to a C-Box/2A, cable length x = 3, 6, 9 or 10 m

Fig. 23 PCF1420-3/C-Box power supply and interface cable

A 2 ASCII Communication with Sensor

A 2.1 General

The ASCII commands can be sent to the controller via the RS422 interface, USB or Ethernet. All commands, inputs and error messages are in English. A command always consists of the command name and zero or more parameters, which are separated by spaces and are completed with CR LF (corresponds \r\n).

The echo is always active, i. e.:

- With a command for setting parameters first the command name and afterwards OK respectively error and finally the prompt return as answer.
- With a command for reading parameters first the command name and afterwards the parameter value and finally the prompt return at answer.
- With a command with answer of several lines first the command name and in the next lines the parameters return as answer.

A 2.2 Data Protocol

All values to be output at the same time are combined for transmission to a frame. A maximum of 12 values/ frames are possible. The measured values are transmitted via TCP/IP with 32 bit and USB with a maximum of 18 data bits

Structure of a measured value frame:

- Sensor 1 Value
- Sensor 1 Intensity
- Sensor 1 Shutter
- Sensor 1 Reflectivity
- Sensor 2 Value
- Sensor 2 Intensity
- Sensor 2 Shutter
- Sensor 2 Reflectivity
- C-Box Value
- C-Box Counter
- C-Box Timestamp
- C-Box Digital

With the Ethernet transmission a header and then a sequence of data frames is transmitted with each package.

The header consists of:

- Preamble (32 bits): MEAS
- Order number (32 bits)
- Serial number (32 bits)
- Flags1 (32 bits), see Fig. 25
- Flags2 (32 bits), see Fig. 26, momentarily without function
- Bytes per frame (16 bits) / Number of frames in the package (16 bits)
- Frame counter (32 bits)

The data frames in the package is always complete (No frame can be distributed on several packages). Each frame consists of his selected measured values (up to 12). Each measured value has again 32 bits.

The valid ranges for sensor and C-Box/2A values are as follows:

- Via RS422/USB:
 - Sensor measured values and additional values depending on sensor, see also operating instructions manual

optoNCDT 1750, optoNCDT 1900 and optoNCDT 2300.

- C-Box measured values from 0 .. 131071, from 262073 ... 262143 (18 bits) error values
- C-Box Counter von 0 .. 262143 (18 bits)
- C-Box Timestamp von 0 .. 262143 (18 bits)
- C-Box Digital von 0 .. 262143 (18 bits)
- Via TCP/IP (Ethernet):
 - Sensor measured values and additional values depending on the sensor, see also operating instructions optoNCDT 1750, optoNCDT 1900 and optoNCDT 2300.
 - However, an additional Hi Byte (0x00) is transmitted to comply with 32 bits.
 - C-Box measured values from INT_MIN (-2147483648) to INT_MAX (2147483647)-11, INT_MAX-10 to INT_MAX are error values
 - C-Box Counter von INT_MIN bis INT_MAX
 - C-Box Timestamp von INT_MIN bis INT_MAX
 - C-Box Digital von INT_MIN bis INT_MAX

Flag 1 bits	Description	Flag 1 bits	Description
0	Sensor 1 Value	11	Sensor 2 Intensity
1	unused	12	Sensor 2 Shutter
2	Sensor 2 Value	13	Sensor 2 Reflectivity
3	unused	14	C-Box Counter
4	C-Box Value	15	C-Box Timestamp
5 to 7	unused	16	C-Box Digital
8	Sensor 1 Intensity	17 to 30	unused
9	Sensor 1 Shutter	30 to 31	01 (fixed value, to distinguish from C-Box,
10	Sensor 1 Reflectivity		where it is 00)

Fig. 25 Description Flags 1 (Ethernet)

Flag 2 bits	Description
0 up to 31	0

Fig. 26 Description Flags 2 (Ethernet)

Value	Interface	Value range
Sensor 1 Value,	USB	0 262072
Sensor 2 Value, C-Box Value	Ethernet -INT_MAX INT_MAX -11	-2147483647 2147483636
C-Box Counter,	USB	0 262143
C-Box Timestamp, C-Box Digital	Ethernet: -INT_MAX INT_MAX	-2147483647 2147483647

Fig. 27 Valid ranges (raw values)

Value	Interface	Value range
Sensor 1 Value,	USB	262073 262143
Sensor 2 Value, C-Box Value	Ethernet: INT_MAX -10 INT_MAX	2147483637 2147483647

Fig. 28 Error ranges (raw values)

Value	Interface	Calculation	Unit
C-Box Value	USB		[mm]
	Value =	Digital * (C-Box Range Max - C-Box Range Min) 131072.0 + C-Box Range	ge Min
	Ethernet	Value = $\frac{\text{Digital}}{1.0e+006}$	[mm]
C-Box Time- stamp	USB	Value = Digital (Left shift by 8 bits) 1.0e+006	[s]
	Ethernet	Value = $\frac{\text{Digital (unsigned int)}}{1.0e+006}$	[s]
C-Box Counter	USB	Digital	without
	Ethernet	Digital (unsigned int)	without
C-Box Digital	, see Fig. 48		

Fig. 29 Calculation of the values

C-Box Digital		
Bits	Description	
0	Trigger IN (TRG IN)	Connector input
1	Multi function input (MF IN)	Connector input
2	Laser-ON (Laser)	Connector input
3	Switching output S1 (OUT S1)	Connector output
4	Switching output S1 (OUT S2)	Connector output
5	Multi function output	Sensor1 output
6	Laser-ON	Sensor1 output
7	Switching input 1	Sensor1 input
8	Switching input 2	Sensor1 input
9	Multi function output	Sensor1 output
10	Laser-ON	Sensor2 output
11	Switching input 1	Sensor2 input
12	Switching input 2	Sensor2 input
13 bis 15 (bzw. 31)	reserved (0)	

Fig. 30 Description C-Box Digital

During a restart or after a configuration change at the C-Box/2A this initializes the sensors and the measuring restarts.

Group	Chapter	Short info
General comm	ands	
	Chap. A 2.3.1.1	Controller information
	Chap. A 2.3.1.2	Search sensor
	Chap. A 2.3.1.3	Sensor information
	Chap. A 2.3.1.4	Read all settings
	Chap. A 2.3.1.5	Language setting
	Chap. A 2.3.1.6	Synchronization
	Chap. A 2.3.1.7	Booting the controller
Triggering	·	·
	Chap. A 2.3.2.1	Trigger Selection
	Chap. A 2.3.2.2	Trigger Level
	Chap. A 2.3.2.3	Number of measuring values displayed
	Chap. A 2.3.2.4	Software Trigger pulse
Interfaces	·	
	Chap. A 2.3.3.1	Ethernet
	Chap. A 2.3.3.2	Setting the measured value server
	Chap. A 2.3.3.3	Baudrate
	Chap. A 2.3.3.4	Find C/Box-2A
Handling of se	tups	·
	Chap. A 2.3.4.1	Save parameter
	Chap. A 2.3.4.2	Load parameter
	Chap. A 2.3.4.3	Default settings

A 2.3 Commands Overview

Group	Chapter	Short info
Measurement		
	Chap. A 2.3.5.1	Measurement mode
	Chap. A 2.3.5.2	Measuring rate
	Chap. A 2.3.5.3	Measured value averaging controller
	Chap. A 2.3.5.4	Measured value averaging sensor
	Chap. A 2.3.5.5	Setting masters / zero
Data output		
	Chap. A 2.3.6.1	Selection digital output
	Chap. A 2.3.6.2	Output data rate
	Chap. A 2.3.6.3	Scale output values
	Chap. A 2.3.6.4	Error processing
	Chap. A 2.3.6.5	Data selection for USB
	Chap. A 2.3.6.6	Data selection for Ethernet
	Chap. A 2.3.6.7	Function selection multifunctional input
	Chap. A 2.3.6.8	Activate error output, switching output 1
	Chap. A 2.3.6.9	Activate error output, switching output 2
	Chap. A 2.3.6.10	Limit values
	Chap. A 2.3.6.11	Data selection
	Chap. A 2.3.6.12	Output range
	Chap. A 2.3.6.13	Two-point scaling
	Chap. A 2.3.6.14	Send command to connected sensor
Laser		
	Chap. A 2.3.7.1	Laser off / laser on

Group	Chapter	Short info
Error values		
	Chap. A 2.3.8.1	Error values via USB
	Chap. A 2.3.8.2	Error values via Ethernet

A 2.3.1 General Commands

A 2.3.1.1 Controller Information

GETINFO

Controller data are queried. Output as per example:

->GETINFO	
Name:	C-Box
Serial:	1000001
Option:	000
Article:	2420072
MAC-Address:	00-0C-12-01-06-08
Version:	xxx.xxx.xxx.xx
->	

A 2.3.1.2 Search Sensor

SCAN1

The controller looks for sensors connected to the socket sensor 1.

The SCAN2 command causes the controller to look for sensors connected to the socket Sensor 2.

A 2.3.1.3 Sensor Information

GETINF01

Provides information about the sensor connected to the socket Sensor 1.

Example of a response if a ILD2300¹ is connected:

```
->GETINF01
Name: ILD2300
Serial: 11020009
Option: 001
Article: 2418004
MAC-Address: 00-0C-12-01-06-08
Version: 004.093.087.02
Measuring range: 20 mm
...
Imagetype: User
->
```

If the sensor was not recognized by the C-Box/2A, the error E39 no sensor found is output. The GETINFO2 command provides information about the sensor connected to the socket Sensor 2.

A 2.3.1.4 Read All Settings

PRINT [ALL]

Print is used to output all query commands, for each line a response with command names in front.

- ALL: Provides further information

A 2.3.1.5 Language Setting

LANGUAGE BROWSER | ENGLISH | GERMAN

Language of indicated web pages.

- BROWSER means display language of the web browser.

Default = BROWSER

1) For the ILD 1420, ILD 1750 and ILD 1900 accordingly.

A 2.3.1.6 Synchronization

SYNC NONE | INTERNAL | EXTERNAL [LLL | HLL]

- NONE: Sensors are not synchronized, the C-Box/2A runs with its own clock and takes just available sensor values.
- INTERNAL: C-Box/2A produces Sync impulse
- EXTERNAL: External Sync impulse is looped through to the sensors
 - In the case of external triggering it can still be switched between Low Level Logic (LLL) and High Level Logic (HLL).
 - Low Level Logic (0 ... 0,7 to 2,8 ... 30)
 - High Level Logic (0 ... 3 to 8 ... 30)

Default = INTERNAL LLL

A 2.3.1.7 Booting the Controller

RESET [ALL]

The C-Box/2A restarts.

- ALL: Also restart the sensors.

A 2.3.2 Triggering

A 2.3.2.1 Trigger Selection

TRIGGER NONE | EDGE | PULSE | SOFTWARE

Selection of trigger mode

- NONE: No triggering
- EDGE: Level triggering via TRG-IN (Measuring value output depends on TRIGGERCOUNT)
- PULSE: Gate triggering via TRG-IN (continuous measuring value output while TRG-In is inactive.)
- SOFTWARE: Triggering via the command TRIGGERSW (measuring value output depends on TRIGGER-COUNT)

Default = NONE

A 2.3.2.2 Trigger Level

```
TRIGGERLEVEL HIGH | LOW LLL | HLL
```

Sets the active level logic and the switching threshold for the trigger input.

- HIGH | LOW: active level logic
- LLL | HLL: Switching threshold
 - LLL = High level logic ==> LO = 0..0.7 Volt, HI = 8..30 Volt)
 - HLL = High level logic ==> LO = 0..3 Volt, HI = 8..30 Volt)

Default = HIGH LLL

A 2.3.2.3 Number of Measuring Values Displayed

TRIGGERCOUNT 0|1...16382|INFINITE|16383

Determines how many measuring values are output after a trigger event.

- 1...16382: Number of measuring values which are displayed after trigger event
- INFINITE | 16383: Start the continuous measuring value output after a trigger event
- 0: Stops the continuous output of measuring values

Default = 1

A 2.3.2.4 Software Trigger Pulse

TRIGGERSW

Generating a software trigger. Is the trigger selection is not SOFTWARE, the error message "E43 triggermode SOFTWARE disabled" is output.

If the command is resent with active measuring value output, the trigger is stopped and the measuring value output is finished.

A 2.3.3 Interfaces

A 2.3.3.1 Ethernet

```
IPCONFIG DHCP|STATIC [<IPAdresse> [<Netmask> [<Gateway>]]]
```

Set Ethernet interface.

- DHCP: IP address and gateway are automatically requested by DHCP. System looks for a LinkLocal address after appr. 30 minutes if no DHCP server is available.
- STATIC: Set IP address, net mask and gateway in format xxx.xxx.xxx

Values stay the same if no IP address, net mask, and/or gateway is typed in.

Default = STATIC 169.254.168.150 255.255.0.0 169.254.1.1

A 2.3.3.2 Setting the Measured Value Server

```
MEASTRANSFER SERVER/TCP [<PORT>]
```

In case of measured value output via Ethernet: currently only TCP server is provided.

- The port is freely selectable between 1024 and 65535.

Default = SERVER/TCP 1024

A 2.3.3.3 Baudrate

```
BAUDRATE <Baudrate>
```

Setting the interface baudrate to the PC. Possible variants: 115.200 (Default), 8.000.000, 4.000.000, 3.500.000, 3.000.000, 2.500.000, 1.500.000, 921.600, 691.200, 460.800, 230.400, 9.600 Baud

Default = 115200

A 2.3.3.4 Find C-Box/2A

Search the C-Box/2A by using the sensorTOOL x.x.x program, see 5.4.2.

A 2.3.4 Handling of Setups

A 2.3.4.1 Save Parameter

STORE 1|2|3|4|5|6|7|8

Save the current parameter under the specified number in the flash. With the restart of the C-Box/2A the last saved data record is always loaded.

A 2.3.4.2 Load Parameter

```
READ ALL|DEVICE|MEAS 1|2|3|4|5|6|7|8
```

Read the current parameter under the specified number in the flash. In addition, the size of the loaded data needs to be specified:

- ALL: All parameters are loaded.
- DEVICE: Only the standard device settings are loaded (interface parameter).
- MEAS: Only the measurement settings are loaded (all features for the measurement).

A 2.3.4.3 Default Settings

SETDEFAULT [ALL] [NODEVICE]

- Sets the default values (Reset to default setting).
- ALL: All setups are deleted and default parameters are loaded, otherwise, only the current setup will be deleted.
- NODEVICE: Settings of IP address are kept temporarily.

A 2.3.5 Measurement

A 2.3.5.1 Measurement Mode

MEASMODE SENSOR1VALUE | SENSOR12THICK | SENSOR12STEP

Set measurement mode, possible are:

- SENSOR1VALUE: Measured value of sensor 1.
- SENSOR12THICK: The measured values of sensor 1 and sensor 2 are subtracted from measuring range and both results are added together. If the mastering is active, both values are subtracted from the internal mastering offset.
- SENSOR12STEP: Difference from measured value of sensor 1 minus measured value of sensor 2.

Default = SENSOR1VALUE

A 2.3.5.2 Measuring Rate

MEASRATE x.xxx

Measuring rate in kHz with three decimal places.

Only measuring rates that support the measuring rates are permit. During deactivated synchronization values between 0.400 and 80.000 are permitted.

A 2.3.5.3 Measured Value Averaging Controller

AVERAGE NONE | MOVING | RECURSIVE | MEDIAN [< Averaging depth>]

Output averaging of the C-Box/2A. The averaging value affects on the C-Box/2A measured value on all interfaces and analog.

- NONE: Measured value averaging not active
- MOVING: Moving average value (averaging depth 2, 4, 8, 16, 32, 64, 128, 256 and 512 possible).
- RECURSIVE: Recursive average value (averaging depth 2, 4, 8, ..., 32768)
- MEDIAN: Median (averaging depth 3, 5, 7 and 9 possible)

Default: NONE

A 2.3.5.4 Measured Value Averaging Sensor

```
AVERAGE1 NONE | MOVING | RECURSIVE | MEDIAN [<Averaging depth>]
```

Averaging in the sensors. The averaging value always affects all to be output displacement and difference values.

- NONE: Measured value averaging not active
- MOVING: Moving average value¹
- RECURSIVE: Recursive average value¹
- MEDIAN: Median¹

The command AVERAGE2 NONE | MOVING | RECURSIVE | MEDIAN [<Averaging depth>] stops averaging the sensor connected to the socket Sensor 2.

Default = NONE

A 2.3.5.5 Setting Masters / Zero

MASTERMV NONE | MASTER <Master value>

Mastering the C-BOXVALUE

- NONE: Terminates the mastering
- MASTER: Setting the current measured value as master value
 - Master value in millimeters (min: -1024.0 mm, max: 1024.0 mm)
 - In case of master value is 0, then the mastering function has the same functionality as the zero setting.

Default = NONE

1) Only those values are possible, which are supported by the sensor.

A 2.3.6 Data Output

A 2.3.6.1 Selection Digital Output

OUTPUT NONE | ETHERNET | HTTP | USB

Activates data output at the desired interface.

- NONE: No measured value output
- ETHERNET: Output of measured values via Ethernet
- HTTP: Output of measured values over the web page of the C-Box/2A
- USB: Output of measured values via USB

Default = HTTP

A 2.3.6.2 Output Data Rate

```
OUTREDUCE <Output reduction> ([ANALOG] [USB] [ETHERNET]) | NONE
```

Reduces the measured value output for all available interfaces.

- 1: Output of every measured value

- 2 ... 1000: Output of each n-th measured value

Default = 1 NONE

A 2.3.6.3 Scale Output Values

```
OUTSCALE_RS422_USB STANDARD|(TWOPOINT <Minimum measured value> <Maximum mea-
sured value>)
```

Sets the scaling of the C-BOXVALUE via USB.

The default scaling is for distance/level 0 to MR (Sensor 1) and for thickness measurement 0 to MR (Sensor1) + MR (Sensor2) (MR=Measuring range).

The minimum and maximum measured value must be indicated in millimeters. The available output range of the USB output is then spread between the minimum and maximum measured value. The minimum and maximum measured value must lie between -1024.0 and 1024.0 mm with 4 decimal places. The maximum value must be larger than the minimum value.

Default = STANDARD 0.0 50.0

A 2.3.6.4 Error Processing

```
OUTHOLD NONE | 0 | <Number>
```

Setting the behavior of the measured value output in case of error for the C-Box/2A measured value, not for the sensor values.

- NONE: No holding the last measured value, output of error value.
- 0: Infinite holding of the last measured value
- Number: Holding the last measured value on the number of measuring cycles; Then an error value (maximal 1024) is output.

Default = NONE

A 2.3.6.5 Data Selection for USB

OUT_USB NONE | ([SENSOR1VALUE] [SENSOR1INTENSITY] [SENSOR1SHUTTER] [SENSOR1REFLEC-TIVITY] [SENSOR2VALUE] [SENSOR2INTENSITY] [SENSOR2SHUTTER] [SENSOR2REFLECTIVITY] [C-BOXVALUE] [C-BOXCOUNTER] [C-BOXTIMESTAMP] [C-BOXDIGITAL])

Setting the values to be output via USB.

- NONE: No output via USB
- SENSOR1VALUE: Measured value of Sensor 1
- SENSOR1INTENSITY: Intensity of Sensor 1
- SENSOR1SHUTTER: Shutter speed des Sensor 1
- SENSOR1REFLECTIVITY: Reflectivity of Sensor 1
- SENSOR2INTENSITY: Intensity of Sensor 2
- SENSOR2VALUE: Measured value of Sensor 2
- SENSOR2SHUTTER: Shutter speed des Sensor 2
- SENSOR2REFLECTIVITY: Reflectivity of Sensor 2
- C-BOXVALUE: Calculated value of C-Box
- C-BOXCOUNTER: Counter value of C-Box
- C-BOXTIMESTAMP: Timestamp of C-Box
- C-BOXDIGITAL: Digital inputs/outputs of C-Box

Default = SENSOR1VALUE

A 2.3.6.6 Data Selection for Ethernet

OUT_ETH NONE | ([SENSOR1VALUE] [SENSOR1INTENSITY] [SENSOR1SHUTTER] [SENSOR1REFLEC-TIVITY] [SENSOR2VALUE] [SENSOR2INTENSITY] [SENSOR2SHUTTER] [SENSOR2REFLECTIVITY] [C-BOXVALUE] [C-BOXCOUNTER] [C-BOXTIMESTAMP] [C-BOXDIGITAL])

Setting the values to be output via Ethernet.

- NONE: No output via Ethernet
- SENSOR1VALUE: Measured value of Sensor 1
- SENSOR1INTENSITY: Intensity of Sensor 1
- SENSOR1SHUTTER: Shutter time of Sensor 1
- SENSOR1REFLECTIVITY: Reflectivity of Sensor 1
- SENSOR2VALUE: Measured value of Sensor 2
- SENSOR2INTENSITY: Intensity of Sensor 2
- SENSOR2SHUTTER: Shutter time of Sensor 2
- SENSOR2REFLECTIVITY: Reflectivity of Sensor 2
- C-BOXVALUE: Calculated value of C-Box
- C-BOXCOUNTER: Counter value of C-Box
- C-BOXTIMESTAMP: Timestamp of C-Box
- C-BOXDIGITAL: Digital inputs/outputs of C-Box

Default = SENSOR1VALUE

A 2.3.6.7 Function Selection Multifunctional Input

MFIFUNC NONE | MASTER | SENSOR1 | SENSOR2 | SENSOR12 LLL | HLL

Function of the multifunction input, either masters or output to one or both multifunction outputs (sensor).

- NONE: No function
- MASTER: C-Box Mastering
- SENSOR1: Multifunction output for sensor 1
- SENSOR2: Multifunction output for sensor 2
- SENSOR12: Multifunction output for sensor 1 and 2
- LLL: Low Level Logic input
- HLL: High Level Logic input

Default = NONE LLL

A 2.3.6.8 Activate Error Output, Switching Output 1

ERROROUT1 SENSOR1ERROROUT1 | SENSOR1ERROROUT2 | SENSOR2ERROROUT1 | SENSOR2ERROROUT2 | S ENSOR1VALUE | SENSOR1INTENSITY | SENSOR1SHUTTER | SENSOR1REFLECTIVITY | SENSOR2VALUE | SE NSOR2INTENSITY | SENSOR2SHUTTER | SENSOR2REFLECTIVITY | C-BOXVALUE | LOW | HIGH

Select the signal source for the switching output 1 (to the periphery).

The first four switches only one error output of the sensors.

The next nine monitoring values from the sensors or the C-Box.

The last two switch the output to a level by command.

Default = LOW

A 2.3.6.9 Activate Error Output, Switching Output 2

ERROROUT2 SENSOR1ERROROUT1 | SENSOR1ERROROUT2 | SENSOR2ERROROUT1 | SENSOR2ERROROUT2 | S ENSOR1VALUE | SENSOR1INTENSITY | SENSOR1SHUTTER | SENSOR1REFLECTIVITY | SENSOR2VALUE | SE NSOR2INTENSITY | SENSOR2SHUTTER | SENSOR2REFLECTIVITY | C-BOXVALUE | LOW | HIGH

Select the signal source for the switching output 2 (to the periphery).

The first four switches only one error output of the sensors.

The next nine monitoring values from the sensors or the C-Box.

The last two switch the output to a level by command.

Default = LOW

A 2.3.6.10 Limit Values

```
ERRORLIMIT1 <Lower Limit><Upper Limit>
```

If a measured value respectively calculated value is to be monitored using ERROROUT1, the limits can be set here.

The minimum and maximum measured value is processed with four decimal places.

```
ERRORLIMIT2 <Lower Limit><Lower limit>
```

If a measured value respectively calculated value is to be monitored using ERROROUT2, the limits can be set here.

The minimum and maximum measured value is processed with four decimal places.

Default = 0.0 0.0

A 2.3.6.11 Data Selection

ANALOGOUT1 SENSOR1VALUE|SENSOR1INTENSITY|SENSOR1SHUTTER|SENSOR1REFLECTIVITY|SEN SOR2VALUE|SENSOR2INTENSITY|SENSOR2SHUTTER|SENSOR2REFLECTIVITY|C-BOXVALUE|FIXED [Wert]

Selection of the signal to be output via the analog output1.

For FIXED, the voltage / current value is indicated with four decimal places.

ANALOGOUT2 SENSOR1VALUE | SENSOR1INTENSITY | SENSOR1SHUTTER | SENSOR1REFLECTIVITY | SEN SOR2VALUE | SENSOR2INTENSITY | SENSOR2SHUTTER | SENSOR2REFLECTIVITY | C-BOXVALUE | FIXED [Wert]

Selection of the signal to be output via the analog output2.

For FIXED, the voltage / current value is indicated with four decimal places.

Default = SENSOR1VALUE

A 2.3.6.12Output Range

ANALOGRANGE1 NONE | 0-5V | 0-10V | -5-5V | -10-10V | 4-20mA

- NONE: No analog output (inactive)
- 0 5 V: The analog output1 outputs a voltage of 0 to 5 Volt.
- 0 10 V: The analog output1 outputs a voltage of 0 to 10 Volt.
- -5 5 V: The analog output1 outputs a voltage of -5 to 5 Volt.
- -10 10 V: The analog output1 outputs a voltage of -10 to 10 Volt.
- 4 20 mA: The analog output1 outputs a current of 4 to 20 milliamperes.

ANALOGRANGE2 NONE | 0-5V | 0-10V | -5-5V | -10-10V | 4-20mA

- NONE: No analog output (inactive)
- 0 5 V: The analog output2 outputs a voltage of 0 to 5 Volt.
- 0 10 V: The analog output2 outputs a voltage of 0 to 10 Volt.
- -5 5 V: The analog output2 outputs a voltage of -5 to 5 Volt.
- -10 10 V: The analog output2 outputs a voltage of -10 to 10 Volt.
- 4 20 mA: The analog output2 outputs a current of 4 to 20 milliamperes.

Default = 0-10V

A 2.3.6.13 Two-point Scaling

ANALOGSCALE1 STANDARD | (TWOPOINT <Minimum Measured Value> <Maximum Measured Value>)

Setting the scaling of analog output1.

The standard scaling is for distances -MR/2 to MR/2, for thickness measurement 0 to 2 MR (MR = measuring range), for intensity 0 to 100 %

If the minimum and maximum measured value is ,0⁴, the standard scale is used.

The minimum and maximum measured value must be indicated in millimeters (distance/thickness) respectively % (intensity).

The available output range of the analog output is then divided between the minimum and maximum measured value. The minimum and maximum measured value must be between -1024.0 and 1024.0 mm, four decimal places.

ANALOGSCALE2 STANDARD | (TWOPOINT <Minimalum Measred Value> <Maximum Measured Value>)

Setting the scaling of analog output2.

The standard scaling is for distances -MR/2 to MR/2, for thickness measurement 0 to 2 MR (MR = measuring range), for intensity 0 to 100 %.

If the minimum and maximum measured value is ,0', the standard scale is used.

The minimum and maximum measured value must be indicated in millimeters (distance/thickness) respectively % (intensity).

The available output range of the analog output is then divided between the minimum and maximum measured value. The minimum and maximum measured value must be between -1024.0 and 1024.0 mm, four decimal places.

Default = STANDARD

A 2.3.6.14 Send Command to Connected Sensor

CHANNEL1 <Command for Sensor 1>

The command is enclosed in quotation marks and is sent and provided by the C-Box/2A with a <CRLF> to the sensor connected to Sensor 1 socket. The response of the sensor is packaged and returned in quotation marks.

If no prompt comes, then up to 15000 ms is waited for the response and afterwards an error is returned.

If no sensor in the C-Box/2A is recognized, immediately an error message returns.

Example of a channel communication, the echo in the sensor is switched off:

Command:	CHANNEL1	"LASERPOW" <crlf></crlf>
Response:	CHANNEL1	"LASERPOW FULL" <crlf>-></crlf>
Command:	CHANNEL1	"LASERPOW FULL" <crlf></crlf>
Response:	CHANNEL1	" <crlf>"<crlf>-></crlf></crlf>
Command:	CHANNEL1	"GETINFO" <crlf></crlf>
Response:	CHANNEL1 ." <crlf>-</crlf>	<pre>"<crlf><crlf>Name:ILD2300<crlf>Serial:1020004<crlf> > 1</crlf></crlf></crlf></crlf></pre>

The command CHANNEL2 sends commands to the sensor connected to the Sensor 2 socket.

A 2.3.7 Laser

A 2.3.7.1 Laser off / Laser on

LASERPOW1 OFF | ON

Line for laser on/off. When the laser is enabled by a jumper between Laser on and GND, it can be switched via the LASERPOW1 OFF / ON command.

The LASERPOW2 command operates analog and is addressed to the sensor connected to the Sensor 2 socket.

1) For the ILD 1420, ILD 1750 and ILD 1900 accordingly.

A 2.3.8 Error Values

A 2.3.8.1 Error Values via USB

262073	USB scaling underflow		
262074	USB scaling overflow		
262075	Too much data for this baud rate		
262079	Measure value cannot be calculated		
262080	Measure value cannot be examined, global error		

A 2.3.8.2 Error Values via Ethernet

7fffff8	Measure value cannot be calculated			
7fffff7	Measure value cannot be examined, global error			

A 3 Control Menu

A 3.1 Tab Home

A 3.1.1 Input

Sensor 1 / Sensor 2	Sensor status, Sensor type, Serial number	Selection of the connected sensor It supports sensors of ILD2300, ILD1420, ILD1750, ILD1900, IFC2421 and IFC2422 series.		
	Averaging	No averaging	Measurement values are not averaged.	
		Moving average	About the selectable filter width N of consecutive measured values the arithmetic mean MgI is formed and output. Each new reading is added and the first (oldest) reading removed from the averaging.	
		Recursive average	Each new metric MW (n) is weighted to the (n-1) -fold of the previous average.	
		Median filter	The median is formed from a preselected filter width N of measured values. For this purpose, the incoming measured values are re-sorted after each measurement. The mean value is then output as median. If an even value is selected for the filter width N, then the middle two metrics are added together and divided by two.	
	Laser	On / Off	Turns on or off the laser light source on the sensor.	

A 3.1.2 Measurement Configuration

Measurement task	Measurement value sensor 1	Measured value of the sensor connected to connection 1.
	Thickness sensor 1-2	Forms the difference between the two distance values of the sensors 1/2 in direct or diffuse reflection, with two-sided distance measurement, and outputs the result as a thickness value.
	Step sensor 1-2	Forms the difference between the two distance values of the sensors 1/2 in direct or dif- fuse reflection, with one-sided distance measurement, and outputs the result as height value.

Mastering/Zeroing	Mastering is dis- abled	Reset master value	Value	Cancel zeroing or mastering
	Mastering is enabled	Set master value	Value	Trigger zeroing or mastering. Master value range: -1024 to 1024 mm.

Trigger mode	No triggering				
	Level triggering	High level / Low leve	el		A continuous output of the measured value is made as long as the selected level is present. After that the data output stops, see 6.5.3.
		Low-Level Logic / Hi Logic	w-Level Logic / High-Level		
	Edge triggering	Rising edge / Value Falling edge			After the trigger event, the sensor outputs the previously set number of measured values or starts a continuous measurement output, see 6.5.3.
		Low-Level Logic / High-Level Logic			
	Software triggering	Software triggering		Trig- ger now	A measured value output is started as soon as a software command is triggered. The trigger time is defined inaccurate. After the trigger event, the sensor outputs the previously set number of readings or starts a continuous readout, see 6.5.3.

A 3.1.3 System Configuration

Digital interface	Disabled	No metrics are output through the digital interface.
selection	Ethernet	Ethernet enables fast, non-real-time data transmission (packet-based data transfer). The meter can be configured via the web interface or by ASCII commands via a terminal program, see A 2.
	Web diagram	The recorded measurements are displayed in the diagram of the website.
	USB	The USB interface provides a lower data rate interface for the transmission of measured value data. Configuration is via ASCII commands, see A 2.

A 3.1.4 Data Selection

Data selection	Sensor 1: Measurement value / Sensor 1: Intensity /	The data which are provided for the transmission are to
Ethernet	Sensor 1: Shutter speed / Sensor 1: Reflectivity /	activate with the checkbox, see 6.6.2.
Data selection USB	Sensor 2: Measurement value / Sensor 2: Intensity /	
	Sensor 2: Shutter speed / Sensor 2: Reflectivity /	
	C-Box/2A: Measurement value / C-Box/2A: Counter /	
	C-Box/2A: Timestamp / C-Box/2A: Digital value	

A 3.2 Tab Settings

A 3.2.1 Inputs

Sensor 1 / Sensor 2	Sensor status / Sensor type / Serial number	Selection of the connected sensor. It supports sensors of the ILD2300, ILD1420, ILD1750, ILD1900, IFC2421 and IFC2422 series. Additional information, see 6.3.1.				
	Averaging	No averaging	Measurement values are not averaged.			
		Moving average Mit- telwert over N values	2 4 8 16 32 64 128	The arithmetic mean value Mgl is generated and output via the selectable filter width N of consecutive measured values, see 6.3.1.		
		Recursive average over N values	Value	Each new metric MW is weighted to the (n-1) value of the previous average, see 6.3.1.		
		Median filter over N values	3 / 5 / 7 / 9	The Median is generated from a preselected filter width N of measured values, see 6.3.1.		
	Laser	On / Off	Turns on or off the laser light	source on the sensor.		

Digital input	Function	Disabled	The multifunction input has no function.	
		Master C-Box/2A value	Multifunction input is master pulse input for the C-Box/2A.	
			For this function to work mastering must be enabled, see 6.5.2.	
		Forward to sensor 1	Multifunction input is forwarded to the corresponding input of the connected sensor 1.	
		Forward to sensor 2	Multifunction input is forwarded to the corresponding input of the connected sensor 2.	
		Forward to sensor 1 and 2	Multifunction input is forwarded to the corresponding inputs of the connected sensors 1 and 2.	
	Logic for digital input Low-level logic		Settings, see also Trigger Mode chapter, see 6.5.3 or Synchro-	
		High-level logic	nization chapter, see 6.5.4.	

A 3.2.2 Data Recording

Measurement task	Measuring mode					Measured value of the sensor connected to connection 1, i.e., the C-Box/2A value includes the value from sensor 1, see 6.4.1.			
			1-2 direct or d			prms the difference between the two distance values of the sensors $1/2$ in rect or diffuse reflection, with two-sided distance measurement, and outputs e result as a thickness value, see $6.4.1$.			
			, dir			Forms the difference between the two distance values of the sensors 1/2 in direct or diffuse reflection, with one-sided distance measurement, and outputs he result as height value, see 6.4.1.			
Measuring rate	Mea (kHz			When synchronization is switched off, the measuring rate can be set freely. Value range: from 0.4 to 80 kHz. Otherwise, the possible measuring rates are specified by the connected sensors / controllers, see 6.4.2.					
	Data rate Web- diagram (kHz)		0.5 / 1	.0	The Web diagram interface uses a slower data rate for data transmis- sion. So for higher measuring rates not all the measured values will b visible in the diagram or saved to file.		or higher measuring rates not all the measured values will be		
Error handling		Error handlir wrong meas ment values	ure-	Error output, r Hold last valid Hold last valid	l value	e Value	If a valid metric can not be obtained, an error value is output. If this hinders further processing, alternatively the last valid measured value can be held over a certain number of measur- ing cycles, that is, repeatedly output, see 6.4.3.		

A 3.2.3 Processing

Filter/Averaging	Averaging	No averaging		Measurement values are not averaged.
		Moving aver- age	2 / 4 / 8 / 16 / 32 / 64 / 128 / 256 / 512	About the selectable filter width N of consecutive measured values the arithmetic mean Mgl is formed and output, see 6.5.1.
		Recursive average	2 / 4 / 8 / 16 / 32 / 64 / 128 / 256 / 512 / 1024 / 2048 / 4096 / 8192 / 16384 / 32768	Each new metric MW (n) is weighted to the (n-1) -fold of the previous average, see 6.5.1.
		Median filter	3/5/7/9	The median is formed from a preselected filter width N of measured values, see 6.5.1.

Mastering/Zeroing	Mastering is	Master	Master value (mm)		
	disabled	Value	Set master value	Trigger zeroing or mastering, see 6.5.2. Master value range: -1024 to 1024 mm.	
	enabled		Reset master value	Cancel zeroing or mastering	

Trigger mode	Selected mode	No triggering		Description, see 6.5.3
		Level triggering	Value	
		Edge triggering		
		Software triggering		

Synchronization	Synchronization	No synchronization Internal synchronization		Sync off. The measuring rate can be freely adjusted. Value range: from 0.4 to 80 kHz.The C-Box/2A forms the time base.	
		synchroniza- tion	$\begin{array}{l} Low-level \ log \\ \leq 0.7 \ V: \ Trigg \\ \geq 2.2 \ V: \ Trigg \\ High-level \ log \\ \leq 3.0 \ V: \ Trigg \\ \geq 8.0 \ V: \ Trigg \end{array}$	ger not active ger active gic (HLL) ger not active	The synchronization signal is received from an external signal source, e.g. function generator.

Output data rate	Output every measured value	Value	
	0 11 0	Analog	The reduction of the output rate causes only every nth measured value to be output. The other measured values are discarded. Any
	interfaces	Ethornot	desired averaging over n values must be set separately.
		USB	

A 3.2.4 Outputs

Digital interface	Used interface f	or data output					
selection	Web diagram	Disabled	No metrics are output through the digital interface.				
		Ethernet	Ethernet enables fast, non-real-time data transmission (packet-based data transfer). The meter can be configured via the web interface or by ASCII commands, see A 2, via a terminal program.				
		Web diagram	Web diagram The recorded measurements are displayed in the diagram of the				
		USB	The USB interface provides a lower data rate interface for the transmission of measured value data. Configuration is via ASCII commands, see A 2.				
Data selection Ethernet Data selection USB	Data selection	Sensor 1: Shutte Sensor 2: Measu Sensor 2: Shutte C-Box/2A: Meas	urement value / Sensor 1: Intensity / er speed / Sensor 1: Reflectivity / urement value / Sensor 2: Intensity / er time / Sensor 2: Reflectivity / urement value / C-Box/2A: Counter / stamp / C-Box/2A: Digital value	The data which are provided for the transmission are to activate with the checkbox, see 6.6.2.			

Settings Ethernet	Address type	DHCP	Static IP address	Submit IP settings	The C-Box/2A provides the mea- sured values itself as server
	IP address / Subnet mask / Default gateway		Values		(transmission type: server / TCP), see 6.6.3.
	Transmission type	Server/TCP			
	Data port	Value			
	Frames per measure-	Automatic /	Manual		
	ment packet		Value		

Appendix | Control Menu

Settings USB	Scaling	Standard scaling	For standard calibration, the entire measuring range of the sensor / controller is output.		
		Two-point scaling	Start of range (mm)		The two-point scaling requires the specification of the
			End of range (mm) Value		beginning and end of the range., see 6.6.4.

Digital	Error output 1 / Er-	Sensor 1: Error output 1 / Sensor 1: Error output 2 /	The data which are provided for
output	ror output 2	Sensor 2: Error output 1 / Sensor 2: Error output 2 /	the transmission are to activate in
		Sensor 1: Measurement value / Sensor 1: Intensity /	the dropdown menu, see 6.6.5.
		Sensor 1: Shutter time / Sensor 1: Reflectivity /	
		Sensor 2: Measurement value / Sensor 2: Intensity /	
		Sensor 2: Shutter time / Sensor 2: Reflectivity /	
		C-Box/2A: Measurement value / Level low / Level high	

Analog output 1, Analog output 2	Output area	Inactive / 0V 5V / 4mA 20mA	-5V 5V / -10V	Specification of analog output, current or voltage with selectable value range.	
	Output signal	Fixed output value / Sensor 1: Measurement value / Sensor 1: Intensity/ Sensor 1: Shut- ter speed / Sensor 1: Reflectivity / Sensor 2: Measurement value / Sensor 2: Intensity/ Sen- sor 2: Shutter speed / Sensor 2: Reflectivity / C-Box/2A: Measurement value			The data which are provided for the trans- mission are to activate in the dropdown men, see 6.6.6.
	Scaling	Standard scaling		At Standard scaling outputs the entire mea- suring range of the sensor / controller.	
		Two-point scaling	Start of range (mm)	Value	The two-point scaling requires the specifica- tion of the beginning and end of the range.
			End of range (mm)	Value	

A 3.2.5 System Settings

Language & Unit	Language at startup	Browser / German / English / Chinese / Japanese / Korean	Specifies the language used at startup.
	Unit on the website	Millimeter / Zoll	Specifies the unit of the measurement display. The unit has no effect on the sensor itself.

Save settings	Save in setup	1/2/3/4/5/6/7/8	Save	Clicking the button saves the settings to the selected setup
	number			file.

Load settings	Load from setup number	1/2/3/4/5/6/7/8	Load	A click on the button loads the settings of the selected setup file.		
	Load	All settings / Interface settings only / Mea- surement settings only				

Manage set- tings on PC	Export settings	The Opening C- Box_2A_Set- tings.txt dialog opens.	Save file	All settings of the C-Box/2A are stored in a file.
	Import settings	Browse	Select the appro- priate file in File Explorer.	The settings of the C-Box/2A are read from a file and sent to the C-Box/2A. Only suitable settings are imported.
	Select settings	Controller settings Ethernet settings	Import	

Appendix | Control Menu

Reset	Reset to fac- tory defaults	All setups	Reset C-Box/2A	The C-Box/2A is reset to the factory default settings. All setups will be deleted and the default parameters will be loaded.		
		Keep interface		The settings for language, password and Ethernet remain unchanged.		
	Reboot options	Reboot sensors	Reboot C-Box/2A	The C-Box/2A will be rebooted. The measurement is interrupted. Unsaved changes are lost.		

A 3.3 Tab Measurement

A 3.3.1 Measurement Configuration

Measuremen	Meas. value sensor 1	Use the drop-down menu to select. Additional information, see 6.4.1.
task	Thickness sensor 1-2	
	Step sensor 1-2	

A 3.3.2 Channel Selection

Sensor 1 / Sensor 2 / C-Box/2A	The corresponding channel must be activated using the check box. Additional information, see 5.4.3.
A 3.3.3 Auto Zero	

Sensor 1 / Sensor 2 / C-Box/2A The corresponding channel must be zeroed in the diagram using the check box. Additional information, see 5.4.3.

A 3.4 **Tab Info**

Comany address	Click the address.	The MICRO-EPSILON website opens.
Telephone	Dlick 🚫 .	
Fax	Dlick 🖶 .	
E-mail	Click 🖸 .	Your e-mail program opens.
Operating instructions	Click Download.	The operating instructions open as a PDF file.

Controller information	The current sensor type, serial number, option, part number, firmware version, website version, MAC ad- dress and UUID are displayed.
Information sensor 1	The current status, sensor type, serial number, option, part number, firmware version and measuring
Information sensor 2	range are displayed.

٠ 1

Selection required or checkbox

Value Specification of a value required

The settings will be effective, if you click on the button Apply. After the programming all settings must be permanently stored under a parameter set so that they are available again when the sensor is switched on the next time.

Operating Instructions

4-Channel RS422/USB Converter

The following sensors/systems can be connected to the 4-Channel RS422/USB Converter:

- Sensors of the ILD1420 / 1750 / 2300 series
- Sensors of the optoCONTROL ODC2500 / 2520 / 2600 series
- Systems of the confocalDT IFD2421 / 2422 / 2451 / /2461 / 2471 series
- Systems of the colorCONTROL ACS7000 series

MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Königbacher Strasse 15

94496 Ortenburg / Germany

Tel. +49 (0) 8542 / 168-0 Fax +49 (0) 8542 / 168-90 info@micro-epsilon.de www.micro-epsilon.com

Contents

1. 1.1 1.2 1.3 1.4 1.5	Safety Symbols Used Warnings Notes on CE Marking Intended Use Proper Environment.	5 5 5 6
2. 2.1 2.2	Functional Principle Description Technical Data	7
3. 3.1 3.2	Delivery Unpacking, Included in Delivery Storage	8
	Mounting. Dimensions. Electrical Connections. 4.2.1 Connection Possibilities. 4.2.2 RS422 Connectors to 6-pin Clamp. 4.2.2.1 Serial Numbers up to 000253. 4.2.2.2 Serial Numbers from 000300. 4.2.3 Trigger Inputs. 4.2.4 RS422 Connectors to 15-pol. Sub-D, Sensor 1/2 and 3/4. 4.2.5 Supply Voltage.	8 9 1 1 1 1
5.	Installation of Driver1	2
6.	Triggering1	
7.	Software Support with MEDAQLib 1	5
8.	Liability for Material Defects1	5
9.	Service, Repair 1	5
10.	Decommissioning, Disposal 1	5
Appendi	x	
A 1	Optional Accessories1	6

1. Safety

System operation assumes knowledge of the operating instructions.

1.1 Symbols Used

The following symbols are used in these operating instructions:

A CAUTION	Indicates a hazardous situation which, if not avoided, may result in minor or moderate injury.
NOTICE	Indicates a situation that may result in property damage if not avoided.
⇒	Indicates a user action.
i	Indicates a tip for users.
Measure	Indicates hardware or a software button/menu.

1.2 Warnings

Connect the power supply according to the safety regulations for electrical equipment.

> Risk of injury

> Damage to or destruction of the converter

NOTICE

Avoid shocks and impacts to the converter.

> Damage to or destruction of the converter

The supply voltage must not exceed the specified limits.

> Damage to or destruction of the converter

Protect the cable against damage.

- > Destruction of the converter
- > Failure of the converter

1.3 Notes on CE Marking

The following apply to the IF2004/USB converter:

- EU Directive 2014/30/EU
- EU Directive 2011/65/EU, "RoHS"

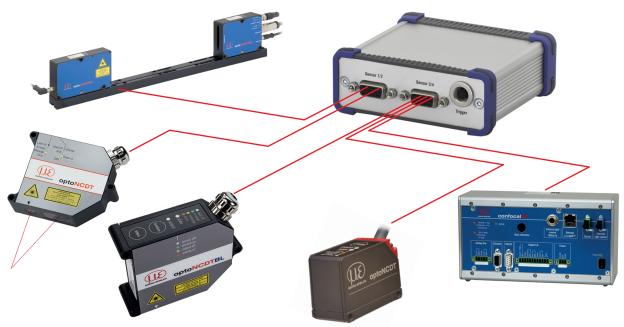
Products which carry the CE mark satisfy the requirements of the EU directives cited and the European harmonized standards (EN) listed therein. The EU Declaration of Conformity is available to the responsible authorities according to EU Directive, article 10, at:

MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Königbacher Straße 15 94496 Ortenburg / Germany

The converter is designed for use in industrial environments and meets the requirements.

1.4 Intended Use

- The converter IF2004/USB is designed for use in industrial and laboratory applications. It is used for
 - converting from the RS422 interface to the USB interface.
- The converter must only be operated within the limits specified in the technical data, see Chap. 2.2.
- The converter must be used in such a way that no persons are endangered or machines and other material goods are damaged in the event of malfunction or total failure of the system.
- Take additional precautions for safety and damage prevention for safety-related applications.


1.5 Proper Environment

- Protection class: IP 40 (applies only when cables are plugged in)
- Temperature range:
 - Operation: +5 ... +50 °C (+41 up to +122 °F)
 - Storage: +5 ... +50 °C (+41 up to +122 °F)
- Humidity: 5 95 % (non-condensing)
- Ambient pressure: Atmospheric pressure

2. Functional Principle

2.1 Description

You can connect up to four sensors respectively controllers of Micro-Epsilon with RS422 interface with the adapter IF2004/USB 2.0 to a USB port.

2.2 Technical Data

Power supply	Converter	via USB interface				
	Sensors/Controller	24 Volt external, see Fig. 2				
	Polarity protection	Yes				
	Galvanic separation	No				
	All GND signals are inte	All GND signals are internal connected with the housing.				
USB bus	USB-Interface 2.0					
Sensor-Interface	2 RS422 driver and 2 F	S422 receiver per connector for data trans-				
Sensor 1/2,	mission, input/output fr	equency max. 8 MHz				
Sensor 3/4	2 RS422 driver per con	2 RS422 driver per connector for sensor synchronization, output				
	frequency max. 8 MHz					
Trigger inputs	4, TTL compatible					
	Input voltage	Low-Level \leq 1.0 V				
		High-Level > 2.0 V				
	Input current max. 3.0 mA					
	Input frequency	max. 100 kHz				
Trigger outputs	2, TTL compatible					
	Output valtage	Low-Level \leq 0.7 V at I _{IN} = 5 mA				
	Output voltage	High-Level > 2,8 V at I $_{OUT}$ = 5 mA				
	Function	programmable				
FIFO	FIFO volume = 3072 tu	iple				
Temperature range	Operation	+5 +50 °C (+41 up to +122 °F)				
	Storage	+5 +50 °C (+41 up to +122 °F)				

3. Delivery

3.1 Unpacking, Included in Delivery

- 1 converter IF2004/USB
- 1 USB cable
- 1 CD with driver, instruction manual
- Carefully remove the components of the converter from the packaging and ensure that the goods are forwarded in such a way that no damage can occur.
- Check the delivery for completeness and shipping damage immediately after unpacking.
- If there is damage or parts are missing, immediately contact the manufacturer or supplier.

3.2 Storage

- Temperature range storage: +5 ... +50 °C (+41 up to +122 °F)
- Humidity: 5 95 % (non-condensing)

4. Mounting

4.1 Dimensions

Converter dimensions (external dimensions): approx. 102.9 x 40.0 x 94.0 mm

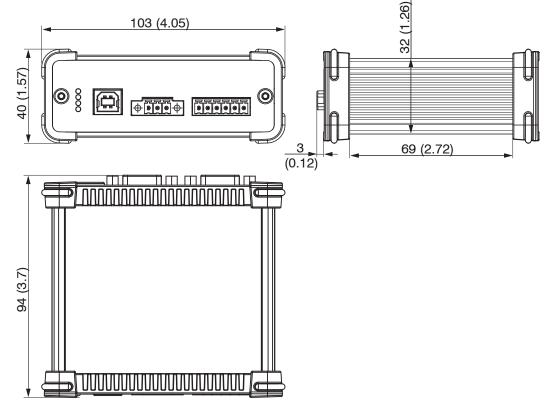


Fig. 1 Dimensional drawing IF2004/USB

4.2 Electrical Connections

4.2.1 Connection Possibilities

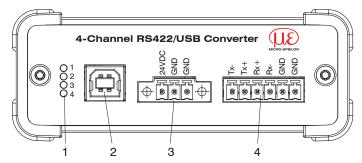


Fig. 2 Connectors and LEDs IF2004/USB - front side



Fig. 3 Connectors IF2004/USB - rear side

Connectors and power LED:

No.	Description
1	4 LEDs green, function programmable (LED 1 to LED 4)
2	USB connector type B
3	3-pin terminal block type Phoenix contact no. 1827871 for power connection
4	6-pin terminal block type Phoenix contact no. 1803316 for additional sensor interface (sensor 1)
5	Sub-HD 15-pin connector for sensor interface (sensor 1 and 2)
6	Sub-HD 15-pin connector for sensor interface (sensor 3 and 4)
7	Binder connector series 712 7-pin type 09-0424-00 for external trigger inputs / outputs

Fig. 4 Overview connectors and LEDs

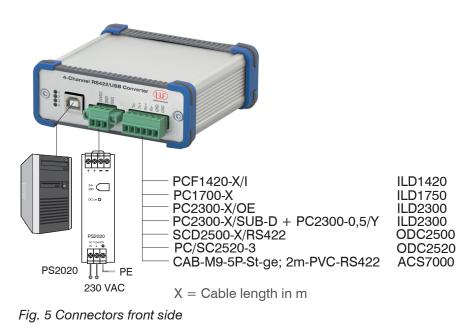


Fig. 6 Connectors rear side

4.2.2 RS422 Connectors to 6-pin Clamp

4.2.2.1 Serial Numbers up to 000253

Pin	Assignment	ILD 1420 PCF1420- X/I	ILD 1750 PC1700-X	ILD 2300 PC2300/OE PC2300-0,5/Y	ODC2520 PC/ SC2520-x	ODC2500 SCD2500-x/ RS422	ACS7000 CAB-M9- 5P-St-ge	
1	Converter TxD-	green	gray	blue				II
2	Converter TxD+	yellow	yellow	red				
3	Converter RxD+	pink	brown	violet	-			
4	Converter RxD-	gray	green	black				

4.2.2.2 Serial Numbers from 000300

Pin	Assignment	ILD 1420 PCF1420- X/I	ILD 1750 PC1700-X	ILD 2300 PC2300/OE PC2300-0,5/Y	ODC2520 PC/ SC2520-x	ODC2500 SCD2500-x/ RS422	ACS7000 CAB-M9- 5P-St-ge	
1	Converter TxD-	yellow	yellow	red	green	green	brown	II
2	Converter TxD+	green	gray	blue	brown	yellow	white	
3	Converter RxD+	gray	green	black	gray	white	yellow	
4	Converter RxD-	pink	brown	violet	yellow	brown	green	

4.2.3 Trigger Inputs

Pin 1	Trigger IN 1	4		
Pin 2	Trigger IN 2	$3 \bigcirc 5$		
Pin 3	Trigger IN 3			
Pin 4	Trigger IN 4			
Pin 5	Trigger OUT 1			
Pin 6	Trigger OUT 2			
Pin 7	GND			
Z-pin subminiature male cable connector				

7-pin subminiature male cable connector,

Company Binder, series 712, view: solder pin side male cable connector

4.2.4 RS422 Connectors to 15-pol. Sub-D, Sensor 1/2 and 3/4

Pin 1	Sensor 1/3 Tx-	and and a second	Pin 11	Sensor 2/4 Tx-
Pin 2	Sensor 1/3 Tx+		Pin 12	Sensor 2/4 Tx+
Pin 3	Sensor 1/3 Rx-	Sensor 1/2	Pin 13	Sensor 2/4 Rx-
Pin 4	Sensor 1/3 RX+		Pin 14	Sensor 2/4 Rx+
Pin 5	GND		Pin 15	GND
Pin 6	Sensor 1/3 TRG+		Pin 8	Sensor 2/4 TRG +
Pin 7	Sensor 1/3 TRG-		Pin 9	Sensor 2/4 TRG-
Pin 10	+24 V ²⁾		Pin 10	+24 V ²⁾

²⁾ Power supply +24 V via power connection, see Fig. 7

4.2.5 Supply Voltage

Nominal value: 24 VDC

Only turn on the power supply after wiring has been completed.

Connect the 24 VDC and GND inputs at the converter with a 24 V voltage supply.

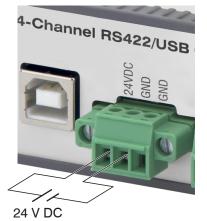


Fig. 7 Connector supply voltage

NOTICE

Use the power supply for measurement instruments only, not simultaneously for drives or similar pulse interferences.

> Disturbance of the data output

MICRO-EPSILON recommends using an optional available power supply unit PS2020, see Chap. A 1, for the converter.

5. Installation of Driver

Before first use of the converter install the respective driver of the company FTDI.

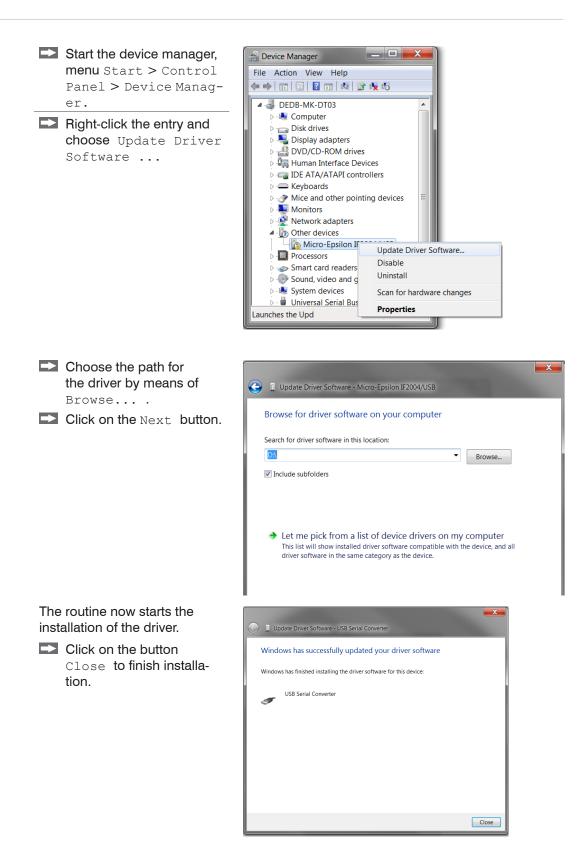
Source of supply for the driver	FTDI Virtual COM Port Treiber (ZIP, 1.32 MB)
	http://www.micro-epsilon.com/download/ drivers/FTDI_VCP_Driver.zip

Install the driver as follows:

- Insert the installation CD into the CD-ROM drives.
- Connect the sensor/controller with the USB converter.
- Connect the USB converter cable with a free USB port.

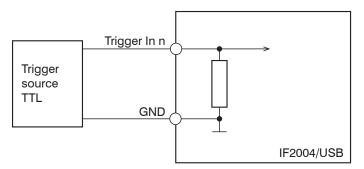
Connect the converter with a power supply.

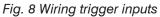
The driver installation starts automatically. Depending on the operating system the latest driver of the internet or the driver CD is used.


For users of Windows 7:

If you use an computer with internet access, connect the converter to a free USB port. Windows 7 automatically searches for the latest driver version and installs the driver.

Manual installation of driver:


You can also install the driver manually if the driver is not installed automatically. Install the driver as follows:


- Insert the installation CD into the CD-ROM drives.
- Connect the sensor/controller with the USB converter.
- Connect the USB converter cable with a free USB port.
- Connect the converter with a power supply.

6. Triggering

The trigger inputs trigger In 1 ... 4 on the converter are connected internal with a pull down resistance with the supply ground. The trigger inputs switches with TTL high level.

- deally connect sensors respectively controllers of the same series for triggering,
- 1 different measuring ranges are possible. This enables coordinated output characteristics of the converter because the time responses of the connected sensors resp. controllers are equivalent.

For triggering sensors/controllers are set to a slave operating mode while the IF2004/ USB works as master.

The following application of triggering presumes a operational IF2004/USB with connected sensors resp. controllers; the voltage supply of IF2004/USB is turned on:

Configure the trigger type in the sensor/controller.					
Opportunity 1: MultiChannelTool	Opportunity 2: Data Acquisition Library				
You can find the MultiChannelTool and the Data Acquisition Library (MEDAQLib) in the download area of the respective sensors/controllers on our website.					
Example with ILD2300					
Choose the button Multi channel configuration in the menu Extras and choose the trigger type.	Choose the command SP_Trigger- mode.				
SILD2300 DAQ Tool V4.1.0 - Synchronization					
File Extras Sprache/Language ?					
Search Multi Channel Configuration					
Manual Configuration Channel 1 Serial number: 14070043 Acquisition mode: Continuous Measurement rate: Continuous Baud rate: Level trigger Baud rate: Level trigger Video averaging: Sync master Video averaging: Sync master Averaging type: leave unchanged Resampling: Both < 1					
Start the measurement.					
Activate triggering with a high impulse see Fig. 8.	Activate triggering with a high impulse (TTL) on the trigger inputs of the converters,				

7. Software Support with MEDAQLib

MEDAQLib offers you a documented driver DLL. Therewith you embed the RS422/USB converter and the connected sensors/controllers into an existing or a customized PC software.

MEDAQLib

- contains a DLL, which can be imported into C, C++, VB, Delphi and many additional programs,
- makes data conversion for you,
- works independent of the used interface type,
- features by identical functions for the communication (commands),
- provides a consistent transmission format for all MICRO-EPSILON sensors.

For C/C++ programmers MEDAQLib contains an additional header file and a library file.

You will find the latest driver / program routine at:

www.micro-epsilon.de/download

www.micro-epsilon.de/link/software/medaqlib

8. Liability for Material Defects

All components of the device have been checked and tested for functionality at the factory. However, if defects occur despite our careful quality control, MICRO-EPSILON or your dealer must be notified immediately.

The liability for material defects is 12 months from delivery. Within this period defective parts, except for wearing parts, will be repaired or replaced free of charge, if the device is returned to MICRO-EPSILON with shipping costs prepaid. Any damage that is caused by improper handling, the use of force or by repairs or modifications by third parties is not covered by the liability for material defects. Repairs are carried out exclusively by MICRO-EPSILON.

Further claims can not be made. Claims arising from the purchase contract remain unaffected. In particular, MICRO-EPSILON shall not be liable for any consequential, special, indirect or incidental damage. In the interest of further development, MICRO-EPSILON reserves the right to make design changes without notification.

For translations into other languages, the German version shall prevail.

9. Service, Repair

If the converter or the USB cable is defective:

- Please send us the affected parts for repair or exchange.

In the cause of a fault cannot be clearly identified, please send the entire measuring system to: MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Königbacher Strasse 15 94496 Ortenburg / Germany

Tel. +49 (0) 8542 / 168-0 Fax +49 (0) 8542 / 168-90 info@micro-epsilon.de www.micro-epsilon.com

10. Decommissioning, Disposal

Remove all cables from the converter.

Incorrect disposal may cause harm to the environment.

Dispose of the device, its components and accessories, as well as the packaging materials in compliance with the applicable country-specific waste treatment and disposal regulations of the region of use.

Optional Accessories DIN rail mounting Installation of the converter on a clip DIN rail or for direct wall mounting TUL TUN 30 (1.18) 5.8 (.32) 8.3 (.33) 22.5 (.89) 17.5 (.69) Mounting rail TS35 2 x ø4.4 (.17 dia.) 36 (1.42) 54 (2.13) 90 (3.54) PS2020 Power supply for DIN rail mounting, input 230 VAC, output 24 VDC/2.5 A

A 1

Appendix

MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Königbacher Str. 15 · 94496 Ortenburg / Deutschland Tel. +49 (0) 8542 / 168-0 · Fax +49 (0) 8542 / 168-90 info@micro-epsilon.de · www.micro-epsilon.com

X9751304-B041049SWE © MICRO-EPSILON MESSTECHNIK

